Ⅰ 用小波分析法除去音频信号的噪声
小波变换及其应用是八十年代后期发展起来的应用数学分支,被称为“Fourier分析方法的突破性进展[1]”。 1986年Meyer Y构造了一个真正的小波基,十多年间小波分析及其应用得到了迅速发展,原则上传统的傅里叶分析可用小波分析方法取代[2],它能对几乎所有的常见函数空间给出通过小波展开系数的简单刻划,也能用小波展开系数描述函数的局部光滑性质,特别是在信号分析中,由于它的局部分析性能优越,因而在数据压缩与边缘检测等方面它比现有的手段更为有效[3-8]。 小波变换在图像压缩中的应用因它的高压缩比和好的恢复图像质量而引起了广泛的注意,且出现了各种基于小波变换的图像压缩方案。
小波变换自1992年Bos M等[9]首先应用于流动注射信号的处理,至今虽才8年时间,但由于小波变换其优良的分析特性而迅速渗透至分析化学信号处理的各个领域。本文介绍了小波变换的基本原理及其在分析化学中的应用情况。
1 基本原理
设f(t)为色谱信号,其小波变换在L2(R)中可表示为:
其中a, b∈R,a≠0,参数a称为尺度因子b为时移因子,而(Wf)(b, a)称为小波变换系数,y(t)为基本小波。在实际分析化学信号检测中其时间是有限长度,f(t)通常以离散数据来表达,所以要采用Mallat离散算法进行数值计算,可用下式表示:
fj+1=θj + f j
其中:N为分解起始尺度;M为分解次数;fj和qj可由下式求得:
此处:Φj, m为尺度函数;Ψj, m 为小波函数;系数Cmj ,dmj可由下式表达:
hk-2m , gk-2m取决于小波母函数的选取。
用图表示小波分解过程如下:
图中fN 、fN-1....fN-m和θN-1、θN-2....θN-m分别称为在尺度N上的低频分量和高频分量。上述分解过程的逆过程即是信号的重构过程。
2 分析化学中的应用
根据小波变换基本原理及其优良的多分辩分析特性,本文将小波变换在分析化学信号处理中的应用划归为以下三个方面:
2.1 信号的滤波
小波滤波方法目前在分析化学中应用主要是小波平滑和小波去噪两种方法。小波平滑是将某一信号先经小波分解,将在时间域上的单一信号分解为一系列不同尺度上的小波系数(也称不同频率上的信号), 然后选定某一截断尺度,使高于此尺度的小波系数全部为零,再重构信号,这样就完成了一个低通小波滤波器的设计;而小波去噪,则是在小波分解基础上选定一阈值,对所有尺度空间的小波系数进行比较,使小于此阈值的小波系数为零,然后重构信号[10]。
邵利民[11]等首次将小波变换应用于高效液相色谱信号的滤波,他们应用了Haar小波母函数,由三次小波分解后所得的低频部分重构色谱信号,结果成功地去除了噪声,明显地提高了色谱信号的信噪比,而色谱峰位保持一致,此法提高了色谱的最低检测量和色谱峰的计算精度。董雁适[12]等提出了基于色谱信号的小波自适应滤波算法,使滤波与噪声的频带分布,强度及信噪在频带上的交迭程度基本无关,具有较强的鲁棒性。
在光谱信号滤噪中的应用,主要为红外光谱和紫外光谱信号滤噪方面的应用,如Bjorn K A[13]等将小波变换用于红外光谱信号的去噪,运用6种不同的小波滤噪方法(SURE,VISU,HYBRID,MINMAX,MAD和WP)对加噪后红外光谱图进行了去噪,针对加噪与不加噪的谱图,对Fourier变换、移动平均滤波与小波滤波方法作了性能比较研究,结果认为Fourier变换、移动平均滤波等标准滤波方法在信噪比很低时滤噪性能与小波滤波方法差不多,但对于高信噪比的信号用小波滤噪方法(特别是HYBRID和VISU)则更有效 。闵顺耕[14]等对近红外漫反射光谱进行了小波变换滤波。顾文良[15]等对示波计时电信号进行了滤噪处理。王立世[16]等对电泳信号也做了小波平滑和去噪,都取得了满意的效果。邹小勇[17]等利用小波的时频特性去除了阶跃伏安信号中的噪音,并提出了样条小波多重滤波分析方法,即将过滤后的高频噪音信号当成原始信号进行滤波处理,使之对有用信号进行补偿。鲍伦军等[18]将样条小波和傅里叶变换联用技术应用于高噪音信号的处理。另外,程翼宇[19]等将紫外光谱信号的滤噪和主成分回归法进行了有机的结合,提出了小波基主成分回归(PCRW)方法,改善了主成分回归算法。
2.1 信号小波压缩
信号经小波分解之后,噪音信号会在高频部分出现,而对于有用的信号分量大部分在低频部分出现,据此可以将高频部分小波系数中低于某一阈值的系数去除,而对其余系数重新编码,只保留编码后的小波系数,这样可大大减少数据贮存量,达到信号压缩的目的。
在近代分析化学中分析仪器的自动化水平在不断提高,分析仪器所提供的数据量越来越大。寻找一种不丢失有效信息的数据压缩方法,节省数据的贮存量,或降低与分析化学信息处理有关的一些算法的处理量,已成为人们关心的问题。Chau F T等[20]用快速小波变换对模拟和实验所得的紫外可见光谱数据进行了压缩,讨论了不同阶数的Daubechies小波基、不同的分解次数及不同的阈值对压缩结果的影响。Barclay V J和Bonner R F[10]对实验光谱数据作了压缩,压缩率可达1/2~1/10,并指出在数据平滑和滤噪的同时,也能进行数据的压缩是小波有别与其他滤波方法的一大特点。王洪等[21]用Daubechies二阶正交小波基对聚乙烯红外光谱进行了成功的压缩,数据可压缩至原来的1/5以下。邵学广等[22]对一维核磁共振谱数据作了小波变换压缩,分别对常用的Haar、Daubechies以及Symmlet小波基作了比较,其结果表明准对称的Symmlet小波基对数据的复原效果最佳,而且在压缩到64倍时,均方差仍然较小。章文军等[23]提出了常用小波变换数据压缩的三种方法,将紧支集小波和正交三次B-样条小波压缩4-苯乙基邻苯二甲酸酐的红外光谱数据进行了对比,计算表明正交三次B-样条小波变换方法效果较好,而在全部保留模糊信号及只保留锐化信号中数值较大的系数时,压缩比大而重建光谱数据与原始光谱数据间的均方差较小。邵学广等[24]将小波数据压缩与窗口因子分析相结合,在很大程度上克服了用窗口因子分析直接处理原始信号时人工寻找最佳窗口的困难,在压缩比高达8:1的情况下,原始信号中的有用信息几乎没有丢失,窗口因子分析的解析时间大为缩短。Bos M等[25]用Daubechies小波对红外光谱数据进行压缩,压缩后的数据作为人工神经网络算法的输入接点,从而提高了人工神经网络的训练速度,预测的效果也比直接用光谱数据训练的要好。
2.3 小波多尺度分析
在多尺度分析方面的应用主要是对化学电信号进行小波分解,使原来单一的时域信号分解为系列不同频率尺度下的信号,然后对这些信号进行分析研究。
小波在色谱信号处理方面的应用,主要是对重叠色谱峰的解析。邵学广[26-27]等对苯、甲苯、乙苯三元体系色谱重叠峰信号小波变换后的某些频率段进行放大,然后重构色谱信号,使重叠色谱峰得到了分离,定量分析结果得到了良好的线性关系。此后邵学广[28]等利用了谱峰提取法对植物激素重叠色谱峰作了定量计算,此法表明,利用小波变换从重叠色谱信号中提取的各组分的峰高与浓度之间仍然具有良好的线性关系。
重叠伏安峰的分辨是电分析化学中一个长期存在的难题。当溶液中存在两种或更多的电活性物质,而这些物质的氧化(或还原)电位又很靠近时,就会不可避免地出现重叠峰的现象,而给进一步的定性、定量分析带来了很大困难。因此,人们做了较多的工作去解决这一难题。数学方法是目前处理重叠峰的重要手段,如Fourier变换去卷积以及曲线拟合。曲线拟合通常用来获得“定量”的信息,但这种方法有较多的人为因素,重叠峰包含的峰的个数,相对强度都是靠假设得来,因而可能引入严重的误差;去卷积方法则是一种频域分析手段,但该方法需先找出一个函数来描述伏安峰,然后再根据这个函数来确定去卷积函数,因此,去卷积函数的确定是比较麻烦的,尤其是对不可逆电极过程,无法找到一个合适的函数表达式,而且该方法还需经正、反Fourier变换,比较繁琐费时, 而小波分析的出现成了电分析化学家关注的热点。
陈洁等[29]用DOG小波函数处理差分脉冲实验数据,通过选择合适的伸缩因子,成功地延长了用DPV法测定Cu2+的线性范围。郑建斌等[30-31]将小波变换用于示波计时电位信号的处理,在有用信息提取、重叠峰分辨等方面进行了系统的研究。王洪等[32]将小波边缘检测的思想用于电位滴定终点的确定,找到了一种判断终点准确的终点判断方法。郑小萍等[33]将样条小波变换技术用于分辨重叠的伏安峰,以选定的分辨因子作用于样条小波滤波器,构造了一个小波峰分辨器,用它来直接处理重叠的伏安峰,取得了较好的分离效果,被处理重叠峰可达到完全基线分离,且峰位置和峰面积的相对误差均较小。
对于红外光谱图,目前也是通过对红外谱图进行小波分解,以提高红外谱图的分辩率。陈洁[34]等对辐射合成的丙烯酰胺、丙烯酸钠共聚物水凝胶的红外光谱信号经小波处理后,使其特征吸收带较好地得到分离,成功地提高了红外光谱图的分辨率。谢启桃[35]等对不同晶型聚丙烯红外光谱图作了小波变换,也得到了可用以区分聚丙烯a、b两晶型的红外光谱图。
3 展望
小波变换由于其优良的局部分析能力,使其在分析化学信号的滤噪、数据压缩和谱峰的分离方面得到了很好的应用。本人通过对小波变换在化学中应用的探索,认为对于分析化学中各种电信号的平滑、滤波还有待作更深入的研究,以设计出更为合理有效的小波滤波器,以消除由于平滑而导至的尖锐信号的峰高及峰面积的变化或由于去噪而带来的尖锐信号附近的不应有的小峰的出现;对于重叠峰的分离及其定量计算,还应该探讨如色谱峰基线的确定方法以及待分离频率段的倍乘系数的确定方法;另外对于色谱峰的保留指数定性问题,由于不同化合物在某一确定的分析条件下有可能会出现保留值相同的情况,这将使在未知样中加标准的峰高叠加法定性或外部标准物对照定性变得困难,我们是否可能对色谱峰进行小波分解,然后在不同的尺度上对其进行考察,以寻求色谱峰的小波定性方法,这可能是个可以进一步研究的问题。
小波变换将在分析化学领域得到更加广泛的应用,特别对于分析化学中的多元定量分析法,如多元线性回归法(MLR),主成分回归法(PCR),偏最小二乘法(PLS)等方法及人工神经网络(ANN)将会同小波变换进行有机的结合,以消除各种噪声干扰对定量分析的影响;或对相关数据进行压缩以减少待分析数据的冗余,提高分析精度和大大减少计算量提高分析速度。小波变换将会成为分析化学中定量和定性分析的一种非常重要的工具。
Ⅱ BP神经网络输出层的输入信号问题
阈值肯定是要包含进来的,阈值的作用就是控制神经元的激活或抑制状态。神经网络是模仿大脑的神经元,当外界刺激达到一定的阀值时,神经元才会受刺激,影响下一个神经元。
简单说来是这样的:超过阈值,就会引起某一变化,不超过阈值,无论是多少,都不产生影响。
阈值又叫临界值,是指一个效应能够产生的最低值或最高值。
阈值又称阈强度,是指释放一个行为反应所需要的最小刺激强度。低于阈值的刺激不能导致行为释放。在反射活动中,阈值的大小是固定不变的,在复杂行为中,阈值则受各种环境条件和动物生理状况的影响。当一种行为更难于释放时,就是阈值提高了;当一种行为更容易释放时,就是阈值下降了。
Ⅲ 谁有深度学习用来图像去噪matlab 代码
如下:
1)迭代一次需要200秒左右,错误率大约为11%
2)迭代一百次后错误率大约为1.2%
3)构建神经网络并进行训练,以CNN结构体的形式保存
4)用已知的训练样本进行测试
Ⅳ 如何通过仪器辨别某个人的声音
所谓声纹(Voiceprint),是用电声学仪器显示的携带言语信息的声波频谱。
人类语言的产生是人体语言中枢与发音器官之间一个复杂的生理物理过程,人在讲话时使用的发声器官--舌、牙齿、喉头、肺、鼻腔在尺寸和形态方面每个人的差异很大,所以任何两个人的声纹图谱都有差异。每个人的语音声学特征既有相对稳定性,又有变异性,不是绝对的、一成不变的。这种变异可来自生理、病理、心理、模拟、伪装,也与环境干扰有关。尽管如此,由于每个人的发音器官都不尽相同,因此在一般情况下,人们仍能区别不同的人的声音或判断是否是同一人的声音。
声纹识别及其应用
声纹识别的应用有一些缺点,比如同一个人的声音具有易变性,易受身体状况、年龄、情绪等的影响;比如不同的麦克风和信道对识别性能有影响;比如环境噪音对识别有干扰;又比如混合说话人的情形下人的声纹特征不易提取;……等等。尽管如此,与其他生物特征相比,声纹识别的应用有一些特殊的优势:(1)蕴含声纹特征的语音获取方便、自然,声纹提取可在不知不觉中完成,因此使用者的接受程度也高;(2)获取语音的识别成本低廉,使用简单,一个麦克风即可,在使用通讯设备时更无需额外的录音设备;(3)适合远程身份确认,只需要一个麦克风或电话、手机就可以通过网路(通讯网络或互联网络)实现远程登录;(4)声纹辨认和确认的算法复杂度低;(5)配合一些其他措施,如通过语音识别进行内容鉴别等,可以提高准确率;……等等。这些优势使得声纹识别的应用越来越收到系统开发者和用户青睐,声纹识别的世界市场占有率15.8%,仅次于手指和手的生物特征识别,并有不断上升的趋势。
1。声纹识别的分类
声纹识别(Voiceprint Recognition, VPR),也称为说话人识别(Speaker Recognition),有两类,即说话人辨认(Speaker Identification)和说话人确认(Speaker Verification)。前者用以判断某段语音是若干人中的哪一个所说的,是“多选一”问题;而后者用以确认某段语音是否是指定的某个人所说的,是“一对一判别”问题。不同的任务和应用会使用不同的声纹识别技术,如缩小刑侦范围时可能需要辨认技术,而银行交易时则需要确认技术。不管是辨认还是确认,都需要先对说话人的声纹进行建模,这就是所谓的“训练”或“学习”过程。
从另一方面,声纹识别有文本相关的(Text-Dependent)和文本无关的(Text-Independent)两种。与文本有关的声纹识别系统要求用户按照规定的内容发音,每个人的声纹模型逐个被精确地建立,而识别时也必须按规定的内容发音,因此可以达到较好的识别效果,但系统需要用户配合,如果用户的发音与规定的内容不符合,则无法正确识别该用户。而与文本无关的识别系统则不规定说话人的发音内容,模型建立相对困难,但用户使用方便,可应用范围较宽。根据特定的任务和应用,两种是有不同的应用范围的。比如,在银行交易时可以使用文本相关的声纹识别,因为用户自己进行交易时是愿意配合的;而在刑侦或侦听应用中则无法使用文本相关的声纹识别,因为你无法要求犯罪嫌疑人或被侦听的人配合。
在说话人辨认方面,根据待识别的说话人是否在注册的说话人集合内,说话人辨认可以分为开集(open-set)辨认和闭集(close-set)辨认。前者假定待识别说话人可以在集合外,而后者假定待识别说话人在集合内。显然,开集辨认需要有一个对集外说话人的“拒识问题”,而且闭集辨认的结果要好于开集辨认结果。本质上讲,说话人确认和开集说话人辨认都需要用到拒识技术,为了达到很好的拒识效果,通常需要训练一个假冒者模型或背景模型,以便拒识时有可资比较的对象,阈值容易选定。而建立背景模型的好坏直接影响到拒识甚至声纹识别的性能。一个好的背景模型,往往需要通过预先采集好的若干说话人的数据,通过某种算法去建立。
如果技术达到一定的水平,可以把文本相关识别并入文本无关识别,把闭集辨认并入开集辨认,从而提供更为方便的使用方法。比如北京得意音通技术有限公司的“得意”身份证就是文本无关的、开集方式的说话人辨认和确认,“得意”身份证SDK还提供建立背景模型的工具。
2。声纹识别的关键问题
声纹识别可以说有两个关键问题,一是特征提取,二是模式匹配(模式识别)。
特征提取的任务是提取并选择对说话人的声纹具有可分性强、稳定性高等特性的声学或语言特征。与语音识别不同,声纹识别的特征必须是“个性化”特征,而说话人识别的特征对说话人来讲必须是“共性特征”。虽然目前大部分声纹识别系统用的都是声学层面的特征,但是表征一个人特点的特征应该是多层面的,包括:(1)与人类的发音机制的解剖学结构有关的声学特征(如频谱、倒频谱、共振峰、基音、反射系数等等)、鼻音、带深呼吸音、沙哑音、笑声等;(2)受社会经济状况、受教育水平、出生地等影响的语义、修辞、发音、言语习惯等;(3)个人特点或受父母影响的韵律、节奏、速度、语调、音量等特征。从利用数学方法可以建模的角度出发,声纹自动识别模型目前可以使用的特征包括:(1)声学特征(倒频谱);(2)词法特征(说话人相关的词n-gram,音素n-gram);(3)韵律特征(利用n-gram描述的基音和能量“姿势”);(4)语种、方言和口音信息;(5)通道信息(使用何种通道);等等。
根据不同的任务需求,声纹识别还面临一个特征选择或特征选用的问题。例如,对“信道”信息,在刑侦应用上,希望不用,也就是说希望弱化信道对说话人识别的影响,因为我们希望不管说话人用什么信道系统它都可以辨认出来;而在银行交易上,希望用信道信息,即希望信道对说话人识别有较大影响,从而可以剔除录音、模仿等带来的影响。
总之,较好的特征,应该能够有效地区分不同的说话人,但又能在同一说话人语音发生变化时保持相对的稳定;不易被他人模仿或能够较好地解决被他人模仿问题;具有较好的抗噪性能;……。当然,这些问题也可以通过模型方法去解决。
对于模式识别,有以下几大类方法:
(1)模板匹配方法:利用动态时间弯折(DTW)以对准训练和测试特征序列,主要用于固定词组的应用(通常为文本相关任务);
(2)最近邻方法:训练时保留所有特征矢量,识别时对每个矢量都找到训练矢量中最近的K个,据此进行识别,通常模型存储和相似计算的量都很大;
(3)神经网络方法:有很多种形式,如多层感知、径向基函数(RBF)等,可以显式训练以区分说话人和其背景说话人,其训练量很大,且模型的可推广性不好;
(4)隐式马尔可夫模型(HMM)方法:通常使用单状态的HMM,或高斯混合模型(GMM),是比较流行的方法,效果比较好;
(5)VQ聚类方法(如LBG):效果比较好,算法复杂度也不高,和HMM方法配合起来更可以收到更好的效果;
(6)多项式分类器方法:有较高的精度,但模型存储和计算量都比较大;
(7)……
声纹识别需要解决的关键问题还有很多,诸如:短话音问题,能否用很短的语音进行模型训练,而且用很短的时间进行识别,这主要是声音不易获取的应用所需求的;声音模仿(或放录音)问题,要有效地区分开模仿声音(录音)和真正的声音;多说话人情况下目标说话人的有效检出;消除或减弱声音变化(不同语言、内容、方式、身体状况、时间、年龄等)带来的影响;消除信道差异和背景噪音带来的影响;……此时需要用到其他一些技术来辅助完成,如去噪、自适应等技术。
对说话人确认,还面临一个两难选择问题。通常,表征说话人确认系统性能的两个重要参数是错误拒绝率和错误接受率,前者是拒绝真正说话人而造成的错误,后者是接受集外说话人而造成的错误,二者与阈值的设定相关。在现有的技术水平下,两者无法同时达到最小,需要调整阈值来满足不同应用的需求,比如在需要“易用性”的情况下,可以让错误拒绝率低一些,此时错误接受率会增加,从而安全性降低;在对“安全性”要求高的情况下,可以让错误接受率低一些,此时错误拒绝率会增加,从而易用性降低。前者可以概括为“宁错勿漏”,而后者可以“宁漏勿错”。我们把真正阈值的调整称为“操作点”调整。好的系统应该允许对操作点的自由调整。
3。声纹识别的应用
声纹识别可以应用的范围很宽,可以说声纹识别几乎可以应用到人们日常生活的各个角落。比如下面举几个例子。
(1)信息领域。比如在自动总机系统中,把“得意”身份证之声纹辨认(www.d-ear.com/Technologies&Procts/Procts-d-Ear%20ID_ch.htm)和“得意”关键词检出器(http://www.d-ear.com/Technologies&Procts/Procts-d-Ear%20Word-Spotter_ch)结合起来,可以在姓名自动拨号的同时向受话方提供主叫方的身份信息。前者用于身份认证,后者用于内容认证。同样,声纹识别技术可以在呼叫中心(Call Center)应用中为注册的常客户提供友好的个性化服务。
(2)银行、证券。鉴于密码的安全性不高,可以用声纹识别技术对电话银行、远程炒股等业务中的用户身份进行确认,为了提供安全性,还可以采取一些其他措施,如密码和声纹双保险,如随机提示文本用文本相关的声纹识别技术进行身份确认(随机提示文本保证无法用事先录好的音去假冒),甚至可以把交易时的声音录下来以备查询。
(3)公安司法。对于各种电话勒索、绑架、电话人身攻击等案件,声纹辨认技术可以在一段录音中查找出嫌疑人或缩小侦察范围;声纹确认技术还可以在法庭上提供身份确认的旁证。
(4)军队和国防。声纹辨认技术可以察觉电话交谈过程中是否有关键说话人出现,继而对交谈的内容进行跟踪(战场环境监听);在通过电话发出军事指令时,可以对发出命令的人的身份进行确认(敌我指战员鉴别)。目前该技术在国外军事方面已经有所应用,据报道,迫降在我国海南机场的美军EP-3侦察机中就载有类似的声纹识别侦听模块。
(5)保安和证件防伪。如机密场所的门禁系统。又如声纹识别确认可用于信用卡、银行自动取款机、门、车的钥匙卡、授权使用的电脑、声纹锁以及特殊通道口的身份卡,把声纹存在卡上,在需要时,持卡者只要将卡插入专用机的插口上,通过一个传声器读出事先已储存的暗码,同时仪器接收持卡者发出的声音,然后进行分析比较,从而完成身份确认。同样可以把含有某人声纹特征的芯片嵌入到证件之中,通过上面所述的过程完成证件防伪。
Ⅳ 什么是神经网络,举例说明神经网络的应用
我想这可能是你想要的神经网络吧!
什么是神经网络:
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络的应用:
应用
在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:
生物原型
从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
建立模型
根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
算法
在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。
Ⅵ 关于神经网络信号处理
神经元网络应用面很广,理论上说它可以应用到你能想到的各个领域,神经元网络在信号处理方面的应用我接触过的有数据压缩,模式识别,还有很多,前景不错。
Ⅶ 神经网络与深度神经网络有什么区别
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
多层神经网络是指单计算层感知器只能解决线性可分问题,而大量的分类问题是线性不可分的。克服单计算层感知器这一局限性的有效办法是,在输入层与输出层之间引入隐层(隐层个数可以大于或等于1)作为输入模式“的内部表示”,单计算层感知器变成多(计算)层感知器。
补充:
深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
Ⅷ 哪里能找到神经网络消噪的论文或相关知识
代意义上对神经网络(特指人工神经网络)的研究一般认为从1943年美国芝加哥大学的生理学家W.S. McCulloch和W.A. Pitts提出M-P神经元模型开始,到今年正好六十年。在这六十年中,神经网络的发展走过了一段曲折的道路。1965年M. Minsky和S. Papert在《感知机》一书中指出感知机的缺陷并表示出对这方面研究的悲观态度,使得神经网络的研究从兴起期进入了停滞期,这是神经网络发展史上的第一个转折。到了20世纪80年代初,J.J. Hopfield的工作和D. Rumelhart等人的PDP报告显示出神经网络的巨大潜力,使得该领域的研究从停滞期进入了繁荣期,这是神经网络发展史上的第二个转折。
到了20世纪90年代中后期,随着研究者们对神经网络的局限有了更清楚的认识,以及支持向量机等似乎更有前途的方法的出现,“神经网络”这个词不再象前些年那么“火爆”了。很多人认为神经网络的研究又开始陷入了低潮,并认为支持向量机将取代神经网络。有趣的是,着名学者C.-J. Lin于2003年1月在德国马克斯·普朗克研究所所做的报告中说,支持向量机虽然是一个非常热门的话题,但目前最主流的分类工具仍然是决策树和神经网络。由着名的支持向量机研究者说出这番话,显然有一种特殊的意味。
事实上,目前神经网络的境遇与1965年之后真正的低潮期相比有明显的不同。在1965年之后的很长一段时期里,美国和前苏联没有资助任何一项神经网络的研究课题,而今天世界各国对神经网络的研究仍然有大量的经费支持;1965年之后90%以上的神经网络研究者改变了研究方向,而今天无论是国际还是国内都有一支相对稳定的研究队伍。实际上,神经网络在1965年之后陷入低潮是因为当时该领域的研究在一定意义上遭到了否定,而今天的相对平静是因为该领域已经走向成熟,很多技术开始走进生产和生活,从而造成了原有研究空间的缩小。
在科学研究中通常有这么一个现象,当某个领域的论文大量涌现的时候,往往正是该领域很不成熟、研究空间很大的时候,而且由于这时候人们对该领域研究的局限缺乏清楚的认识,其热情往往具有很大的盲目性。从这个意义上说,过去若干年里各领域研究者一拥而上、各种专业刊物满眼“神经网络”的风光,其实是一种畸形繁荣的景象,而对神经网络的研究现在才进入了一个比较理智、正常的发展期。在这段时期中,通过对以往研究中存在的问题和局限进行反思,并适当借鉴相关领域的研究进展,将可望开拓新的研究空间,为该领域的进一步发展奠定基础。