❶ 大家有什么好的无线传感器网络方面的书籍推荐下,希望里面介绍节点定位技术的多些,在线等!
节点定位技术(5)数据融合技术几乎热点问题在这个方面上。你可以多上网看看有什么不完善的地方。你完善了就能进行设计研究了。 他就是无数个传感
❷ 无线传感器的应用实例
桥梁健康检测及监测桥梁结构健康监测(SHM)是一种基于传感器的主动防御型方法,可以弥补目前安全性能十分重要的结构中,把传感器网络安置到桥梁、建筑和飞机中,利用传感器进行SHM是一种可靠且不昂贵的做法,可以在第一时间检测到缺陷的形成。这种网络可以提早向维修人员报告在关键结构中出现的缺陷,从而避免灾难性事故。粮仓温湿度监测无线传感器网络技术在粮库粮仓温度湿度监测领域应用最为普遍,这是由于粮库粮仓温度湿度的测点多,分布广,使用纵横交错的信号线会降低防火安全系数,应用无线传感器网络技术具有低功耗,低成本,布线简单,安装方便,易于组网,便于管理维护等特点。混凝土浇灌温度监测在混凝土施工过程中,将数字温度传感器装入导热良好的金属套管内,可保证传感器对混凝土温度变化作出迅速的反应。每个温度监测金属管接入一个无线温度节点,整个现场的无线温度节点通过无线网络传输到施工监控中心,不需要在施工现场布放长电缆,安装布放方便,能够有效解决温度测量点因为施工人员损坏电缆造成的成活率较低的问题.地震监测通过使用由大量互连的微型传感器节点组成的传感器网络,可以对不同环境进行不间断的高精度数据搜集。采用低功耗的无线通信模块和无线通信协议可以使传感器网络的生命期延续很长时间。保证了传感器网络的实用性。无线传感器网络相对于传统的网络,其最明显的特色可以用六个字来概括即:“自组织,自愈合”。这些特点使得无线传感器网络能够适应复杂多变的环境,去监测人力难以到达的恶劣环境地区。BEETECH无线传感器网络节点体积小巧,不需现场拉线供电,非常方便在应急情况下进行灵活部署监测并预测地质灾害的发生情况。建筑物振动检测建筑物悬臂部分不会因为旁边公路及地铁交通所引发的振动而超过舒适度的要求;通过现场测量,收集数据以验证由公路及地铁交通所引发的振动与主楼悬臂振动之相互关系; 同时,通过模态分析得到主楼结构在小振幅脉动振动工况下前几阶振动模态的阻尼比,为将来进行结构的小振幅动力分析提供关键数据。本次应用采用高精度加速度传感器,捕捉大型结构微弱振动,同样适用于风载,车辆等引起的脉动测量。
❸ 简述如何利用互联网进行无线传感网络的远程传输
利用互联网进行无线传感,网络的远程传输有利于更快的传输
❹ 无线传感网络求助
全新物联网安防系统
本系统通过物联网及传感网络的深入运用,实现了特定区域的安全防范以及智能控制等功能,结合人机对话以及逻辑判断技术使得系统更加灵活具有前瞻性。
系统采取独立设计,根据用户需求对系统的各项配置进行有针对性的组合,在满足用户需求的前提下,可有效避免系统的同一性(即任何2套系统之间都有较大区别),保证了系统的唯一性,并且预留用户自我修改界面,可方便用户自行对系统的各种状态进行修改。
功能说明:
安全防范部分
安防部分分为三部分1.外围周界检测及防御 2.过渡区检测及防御 3.核心区域检测及紧急防御。
1.外围周界检测及防御
此部分主要对周界进行智能分析检测,可对外围徘徊进行语音警告,并对翻越人员进行有效防御,采取智能检测可有效避免误检和漏检,通过软件智能分析可有效区分人员动物或干扰。
2.过渡区检测及防御
过渡区位于外围防御区与核心区域之间,对于住宅用户既院落部分,系统对于此部分采取跟踪定位,当外围区域被侵入后迅速定位侵入人员并启动防御措施对其进行防御,同时可结合视频设备对其进行抓拍,防御手段可根据用户要求进行有针对性的定制。
3.核心区域防御
此区域为住宅的居住部分,包括门窗的检测防御,以及会客区的紧急防御等功能,同时对房屋的主要出入口采取缓冲措施,即对出入口区域设定缓冲区,当缓冲区内存在多人的情况下系统需要多人全部身份验证后才可允许进入,可有效避免跟随以及人员内外结合进入的可能性。
紧急防御功能,此功能只在有访客到来以及核心区域被侵入的情况下才可启动,在特殊情况下保护用户的安全,同时避免了无侵入情况下的误触发的可能性。以上三个部分相互协同相互感知,彼此相互联动,大大的加强了系统的稳定性及安全性。
并且系统还具备完善的燃气泄露及消防报警功能系统在有燃气设备的区域设置了燃气检测及处理功能,当系统发现某一区域燃气浓度超标时,将第一时间通知用户不要进入,同时系统自动根据现场条件进行处理,例如关闭燃气总阀,打开通风设备以及切断相应区域电源等一系列措施,确保用户人身安全,当系统检测已无危险时会自动解除相应状态同时通知用户危险已经解除,火灾等突发情况处理同样。
同时我们充分考虑到各种不确定因素,为系统设置了备用电源系统确保住宅供电失常情况下,系统可保持一定时间的正常使用,通讯畅通无阻,避免有不法分子企图通过切断电源来入侵系统。
智能家居部分
传统智能家居无法摆脱大量的遥控器以及面板式的操作,而本系统无需任何额外的操作即可享受系统带来的高度智能化得家居享受。
1.灯光控制
在房屋各个功能区采取出入口控制以及区域定位技术,将采集数据反馈到处理单元,对数据统一分析处理并发送至控制单元,通过控制输出对各个功能区灯光进行调节控制,模式改变等。同时设置本地控制开关与系统并联使用,通过简单的操作可以进行灯光场景的设置,方便用户根据不同的使用要求进行不同的选择。
在客厅部分,系统通过出入口计数来判断区域人员数量,同时结合室内光线强度自动开启灯具,并调节光亮度以达到舒适的光线,系统根据门禁系统反馈信号,调用访客数据对客厅区域灯光模式进行选择,可由用户自行定制不同的会客以及休息等模式下,灯光开启方式数量强弱等。
在餐厅区域,系统根据处理单元自带系统时钟,以及光线条件以及人员移动,来自动调节控制灯光模式数量等,同样用户可根据个人喜好轻松DIY各种控制模式,彰显个人品味。
在主卧室设置光线感应器,可根据室内的光线来调节照明灯的亮度,以寻求最舒适的感受,同时结合人员定位当无人时自动延时关闭灯光,当用户起夜时系统将自动为其开启床头灯,同时根据其移动轨迹开启相应区域灯,避免影响他人休息。
同时灯光系统可与安防系统联动,当家中无人时如有不法分子妄想偷窃财务,系统将自动开启个别区域的灯光吓止其企图。
对于室外、装饰、泛光等照明方式的控制,将根据用户需求进行设计同时预留多种方案供用户自行切换。本系统还可以提供其它各种智能控制功能,尤其是该系统灵活方便,可根据用户的不同要求随时方便的更改,而不必对现场线路进行任何改动
2.门窗控制系统
本系统具有完善的门窗及窗帘控制功能,对于门的控制系统根据门禁系统反馈信号,通过控制输出单元直接控制电控锁的开关。窗及窗帘的控制系统采取多种控制方式,例如卧室窗的控制,系统可根据室内空气成分以及外部天气自动开窗通风,也可根据人员位置开关,还可以根据传感信号用户自选开关。卧室窗帘控制我们采取人性化控制,系统检测用户是否起床,外部光线条件,以及卧室区域是否有人等进行分析判断决定其开启或关闭,同时保留手动开关定时开关等功能供用户自由搭配选择使用。
3.居家电器控制
居家电器控制部分,系统实现了无操作自动服务,即所有电器设备只要与系统相连即可根据用户预先设定的工作模式,系统根据人员移动自动开启,以热水器为例,当用户设定好其工作模式后(水温,水量等),当用户回家或到预定时间后将自动运行至所需条件,同时也可远程设定各种参数,当用户使用时一切都已准备就绪,所有电器设备的控制我们根据用户喜好进行设计,同时预留多种模式搭配供用户自行切换使用
人机界面部分
人机界面系统是本系统实现,用户与系统沟通的窗口。我们在设计时充分征求用户意见及喜好,为其量身定做适合其个人品味的人机窗口,方便用户在系统使用过程中随时根据自己的喜好及需求对系统进行修改,轻松便捷轻松点击鼠标即可完成各种功能的搭配。
❺ 无线传感器网络的组网
WSN按我的理解是分为了三部分,
1、硬件,这部分可做的东西不多,应为射频模块一般都是购买的,扩展板或者网关点可以自制;
2、软件,包括协议栈(多层),无线传感操作系统(tinyos,contiki),还有一些应用程序;
3、仿真,利用NS2,OMNET+,matlab等软件来仿真某一层的协议;
建议如下:
1、先去图书馆看看关于无线传感的书籍,还有802.15.4的资料,还有Zigbee的书籍;
2、购买一套Zigbee平台跑跑,现在大部分都是Ti的套件;
3、从你需要的题目内容一步步入手!
❻ ZigBee无线网络原理的内容简介
《ZigBee无线网络原理》适合高等学校物联网技术专业及相关专业的教学使用,在完成《ZigBee无线网络原理》学习后通常都能自己动手开发ZigBee相关项目,因此《ZigBee无线网络原理》可以用作现场技术人员及物联网从业人员的培训教材。ZigBee是一种基于IEEE802.1 5.4 标准、简单易用、近距离、低速率、低功耗(长电池寿命)且极廉价的无线通信技术,是无线传感网和物联网的首选技术之一。《ZigBee无线网络原理》通过实验可直观演示ZigBee组网、ZigBee数据传输、ZigBee网络拓扑等功能,使读者更加容易掌握和理解。《ZigBee无线网络原理》的实验均有源代码,并通过了实际的验证。
❼ 无线传感器网络体系结构包括哪些部分,各部分的
结构
传感器网络系统通常包括传感器节点EndDevice、汇聚节点Router和管理节点Coordinator。
大量传感器节点随机部署在监测区域内部或附近,能够通过自组织方式构成网络。传感器节点监测的数据沿着其他传感器节点逐跳地进行传输,在传输过程中监测数据可能被多个节点处理,经过多跳后路由到汇聚节点,最后通过互联网或卫星到达管理节点。用户通过管理节点对传感器网络进行配置和管理,发布监测任务以及收集监测数据。
传感器节点
处理能力、存储能力和通信能力相对较弱,通过小容量电池供电。从网络功能上看,每个传感器节点除了进行本地信息收集和数据处理外,还要对其他节点转发来的数据进行存储、管理和融合,并与其他节点协作完成一些特定任务。
汇聚节点
汇聚节点的处理能力、存储能力和通信能力相对较强,它是连接传感器网络与Internet 等外部网络的网关,实现两种协议间的转换,同时向传感器节点发布来自管理节点的监测任务,并把WSN收集到的数据转发到外部网络上。汇聚节点既可以是一个具有增强功能的传感器节点,有足够的能量供给和更多的、Flash和SRAM中的所有信息传输到计算机中,通过汇编软件,可很方便地把获取的信息转换成汇编文件格式,从而分析出传感节点所存储的程序代码、路由协议及密钥等机密信息,同时还可以修改程序代码,并加载到传感节点中。
管理节点
管理节点用于动态地管理整个无线传感器网络。传感器网络的所有者通过管理节点访问无线传感器网络的资源。
无线传感器测距
在无线传感器网络中,常用的测量节点间距离的方法主要有TOA(Time of Arrival),TDOA(Time Difference of Arrival)、超声波、RSSI(Received Sig nalStrength Indicator)和TOF(Time of Light)等。
❽ STM32W108嵌入式无线传感器网络的图书目录
第1章嵌入式物联网技术绪论1.1物联网的组成1.2无线传感器网络1.2.1无线传感器网络结构1.2.2无线传感器网络特点1.3嵌入式物联网控制技术1.3.1带有可移动节点的大规模WSNs组网技术1.3.2智能移动体设计1.3.3嵌入式终端设计1.3.4无线传感器节点设计1.4基于ARM CortexM3核心ZigBee技术的优势1.5思考与练习题第2章ARM CortexM3技术2.1概述2.2核心模块2.2.1内部架构2.2.2寄存器2.3指令系统2.3.1指令列表2.3.2操作数2.3.3使用PC或SP的限制2.3.4第二操作数的构成2.3.5移位操作2.3.6地址对齐2.3.7相对于程序计数器PC的表达式2.3.8条件执行2.3.9指令宽度选择2.3.10存储器访问指令2.3.11一般数据处理指令2.3.12乘法和除法指令2.3.13饱和指令2.3.14位域指令2.3.15跳转和控制指令2.3.16其他指令2.4软件编程接口2.5思考与练习题第3章STM32W108体系结构3.1STM32W108架构3.1.1片内结构3.1.2功能单元描述3.2封装与引脚说明3.2.1封装3.2.2引脚说明3.3思考与练习题第4章 STM32W108功能模块设计4.1功能模块概述4.2电源模块4.2.1内部稳压电源4.2.2外部稳压电源4.2.3外部稳压电源电路设计4.3复位模块4.3.1复位原理4.3.2复位电路设计4.4时钟管理模块4.4.1时钟模块总体结构4.4.2时钟功能模块原理4.5系统定时器模块4.5.1看门狗定时器4.5.2睡眠定时器4.6电源管理模块4.6.1唤醒源4.6.2基本睡眠模式4.6.3深睡眠选项4.7思考与练习题第5章内部存储器与无线射频模块5.1STM32W108内部存储空间5.2Flash存储器5.3RAM数据存储器5.4STM32W108射频模块5.4.1接收模块5.4.2发送模块5.4.3集成MAC模块5.4.4随机数发生器5.5思考与练习题第6章STM32W108通用IO接口6.1通用IO功能描述6.1.1GPIO端口6.1.2配置6.1.3增强功能6.1.4复位6.1.5nBOOTMODE6.1.6GPIO模式6.1.7唤醒监控6.2通用IO配置寄存器6.2.1端口配置寄存器(低位)(GPIO_PxCFGL)6.2.2端口配置寄存器(高位)(GPIO_PxCFGH)6.2.3端口输入数据寄存器(GPIO_PxIN)6.2.4端口输出数据寄存器(GPIO_PxOUT)6.2.5端口输出清除寄存器(GPIO_PxCLR)6.2.6端口输出设置寄存器(GPIO_PxSET)6.2.7端口唤醒监控寄存器(GPIO_PxWAKE)6.2.8GPIO唤醒滤波寄存器(GPIO_WAKEFILT)6.2.9中断选择寄存器(GPIO_IRQxSEL)6.2.10GPIO中断配置寄存器(GPIO_INTCFGx)6.2.11GPIO中断标志寄存器(INT_GPIOFLAG)6.2.12GPIO调试配置寄存器(GPIO_DBGCFG)6.2.13GPIO调试状态寄存器(GPIO_DBGSTAT)6.3应用实例解析6.3.1开发环境与硬件说明6.3.2软件设计与规划6.3.3LED控制程序设计6.3.4测试程序编写6.3.5测试结果及分析6.4思考与练习题第7章STM32W108中断机制7.1中断控制7.1.1嵌套向量中断控制器(NVIC)7.1.2事件管理器7.2中断配置寄存器7.2.1顶级置位中断配置寄存器(INT_CFGSET)7.2.2顶级清除中断配置寄存器(INT_CFGCLR)7.2.3顶级置位中断挂起寄存器(INT_PENDSET)7.2.4顶级清除挂起中断标志寄存器(INT_PENDCLR)7.2.5顶级激活中断寄存器(INT_ACTIVE)7.2.6顶级丢失中断寄存器(INT_MISS)7.2.7辅助故障状态寄存器(SCS_AFSR)7.3应用实例解析7.3.1开发环境与硬件说明7.3.2软件设计与规划7.3.3中断处理程序设计7.3.4测试程序编写7.3.5测试结果及分析7.4思考与练习题第8章STM32W108串行通信8.1串行通信控制模块8.1.1功能描述8.1.2通信配置8.2UART8.2.1UART模块8.2.2UART寄存器8.3UART通信应用实例8.3.1开发环境与硬件平台8.3.2软件设计与规划8.3.3测试程序编写8.3.4测试结果及分析8.4SPI模块8.4.1SPI主模式8.4.2SPI从模式8.4.3SPI寄存器8.5思考与练习题第9章STM32W108 AD转换器9.1功能描述9.1.1配置9.1.2GPIO使用9.1.3参考电压9.1.4偏置/增益校正9.1.5DMA9.1.6ADC输入9.1.7模拟电压输入范围9.1.8采样时间9.1.9AD转换9.1.10校准9.1.11注意事项9.1.12中断9.2ADC寄存器9.2.1ADC配置寄存器(ADC_CFG)9.2.2ADC偏移寄存器(ADC_OFFSET)9.2.3ADC增益寄存器(ADC_GAIN)9.2.4ADC DMA配置寄存器(ADC_DMACFG)9.2.5ADC DMA状态寄存器(ADC_DMASTAT)9.2.6ADC DMA起始地址寄存器(ADC_DMABEG)9.2.7ADC DMA缓冲区大小寄存器(ADC_DMASIZE)9.2.8ADC DMA当前地址寄存器(ADC_DMACUR)9.2.9ADC DMA计数寄存器(ADC_DMACNT)9.2.10ADC中断标志寄存器(INT_ADCFLAG)9.2.11ADC中断配置寄存器(INT_ADCCFG)9.3应用实例解析9.3.1开发环境与硬件说明9.3.2软件设计与规划9.3.3传感器数据采集程序设计9.3.4测试程序编写9.3.5测试结果及分析9.4思考与练习题第10章802.15.4/ZigBee协议栈接口函数10.1802.15.4/ZigBee协议栈10.2STM32W108的802.15.4/ZigBee协议栈10.3协议栈接口10.4启动协议栈实例解析10.4.1开发工具及协议栈安装10.4.2工程创建10.4.3STM32W108协议栈实例解析10.5思考与练习题第11章STM32W108两节点间通信11.1实例开发环境说明11.2软件设计与规划11.3程序设计与实现11.4测试结果及分析11.5思考与练习题第12章多节点间通信12.1实例任务规划12.2实例开发环境12.3软件设计与规划12.4编程与实现12.5测试结果及分析12.6思考与练习题第13章多传感器环境参数监测实例13.1实例开发环境说明13.2硬件电路设计13.3软件设计与规划13.4传感器数据采集程序设计与实现13.4.1温度传感器13.4.2温湿度传感器13.4.3超声波传感器13.4.4烟雾传感器13.4.5声音传感器13.4.6光敏传感器13.5测试程序编写13.6实例结果及分析13.7实例注意事项及说明13.8思考与练习题第14章μCOSII的移植及实时环境监测14.1开发环境说明14.2软件设计与规划14.3工程创建及文件添加14.4相关源文件更改14.5测试程序设计14.6实验结果及分析14.7思考与练习题第15章无线传感器网络节点定位技术15.1RSSI与通信距离15.2距离计算经验公式的确定15.3N次三边质心加权定位法介绍15.4算法设计15.4.1符号定义说明15.4.2数据包的接收保存及实时距离的计算15.4.3N次三边质心加权法15.5定位算法实现15.5.1软件设计流程15.5.2经验公式获取程序设计15.5.3N次三边质心加权定位程序设计15.6定位实验及结果分析15.6.1经验公式确定15.6.2N次三边质心加权定位实验15.7思考与练习题第16章节点自组织与移动智能体导航技术16.1开发环境与定位方法说明16.2系统设计16.2.1相关符号说明16.2.2总体设计16.2.3网络模型16.2.4无线自组网16.2.5移动节点定位16.2.6移动智能体导航分析16.2.7电子罗盘模块工作原理16.2.8移植智能体导航设计16.3程序设计与实现16.3.1大规模自组网程序16.3.2移动智能体导航程序16.3.3主函数程序设计16.4调试与结果分析16.4.1无线自组织网络16.4.2移动智能体导航16.5思考与练习题
❾ 无线传感器网络节点部署问题研究
无线传感器网络是近几年发展起来的一种新兴技术,在条件恶劣和无人坚守的环境监测和事件跟踪中显示了很大的应用价值。节点部署是无线传感器网络工作的基础,对网络的运行情况和寿命有很大的影响。部署问题涉及覆盖、连接和节约能量消耗3个方面。该文重点讨论了网络部署中的覆盖问题,综述了现有的研究成果,总结了今后的热点研究方向,为以后的研究奠定了基础。
基于虚拟势场的有向传感器网络覆盖增强算法
陶 丹+, 马华东, 刘 亮
(智能通信软件与多媒体北京市重点实验室(北京邮电大学),北京 100876)
A Virtual Potential Field Based Coverage-Enhancing Algorithm for Directional Sensor Networks
TAO Dan+, MA Hua-Dong, LIU Liang
(Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia (Beijing University of Posts and Telecommunications), Beijing 100876, China)
+ Corresponding author: Phn: +86-10-62282277, Fax: +86-10-62283523, E-mail: [email protected], http://www.bupt.e.cn
Tao D, Ma HD, Liu L. A virtual potential field based coverage-enhancing algorithm for directional sensor networks. Journal of Software, 2007,18(5):11521163. http://www.jos.org.cn/1000-9825/18/1152.htm
Abstract: Motivated by the directional sensing feature of video sensor, a direction adjustable sensing model is proposed first in this paper. Then, the coverage-enhancing problem in directional sensor networks is analyzed and defined. Moreover, a potential field based coverage-enhancing algorithm (PFCEA) is presented. By introcing the concept of “centroid”, the pending problem is translated into the centroid points’ uniform distribution problem. Centroid points repel each other to eliminate the sensing overlapping regions and coverage holes, thus enhance the whole coverage performance of the directional sensor network. A set of simulation results are performed to demonstrate the effectiveness of the proposed algorithm.
Key words: directional sensor network; directional sensing model; virtual potential field; coverage enhancement
摘 要: 首先从视频传感器节点方向性感知特性出发,设计了一种方向可调感知模型,并以此为基础对有向传感器网络覆盖增强问题进行分析与定义;其次,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA (potential field based coverage-enhancing algorithm).通过引入“质心”概念,将有向传感器网络覆盖增强问题转化为质心均匀分布问题,以质心点作圆周运动代替传感器节点传感方向的转动.质心在虚拟力作用下作扩散运动,以消除网络中感知重叠区和盲区,进而增强整个有向传感器网络覆盖.一系列仿真实验验证了该算法的有效性.
关键词: 有向传感器网络;有向感知模型;虚拟势场;覆盖增强
中图法分类号: TP393 文献标识码: A
覆盖作为传感器网络中的一个基本问题,反映了传感器网络所能提供的“感知”服务质量.优化传感器网络覆盖对于合理分配网络的空间资源,更好地完成环境感知、信息获取任务以及提高网络生存能力都具有重要的意义[1].目前,传感器网络的初期部署有两种策略:一种是大规模的随机部署;另一种是针对特定的用途进行计划部署.由于传感器网络通常工作在复杂的环境下,而且网络中传感器节点众多,因此大都采用随机部署方式.然而,这种大规模随机投放方式很难一次性地将数目众多的传感器节点放置在适合的位置,极容易造成传感器网络覆盖的不合理(比如,局部目标区域传感器节点分布过密或过疏),进而形成感知重叠区和盲区.因此,在传感器网络初始部署后,我们需要采用覆盖增强策略以获得理想的网络覆盖性能.
目前,国内外学者相继开展了相关覆盖增强问题的研究,并取得了一定的进展[25].从目前可获取的资料来看,绝大多数覆盖问题研究都是针对基于全向感知模型(omni-directional sensing model)的传感器网络展开的[6],
即网络中节点的感知范围是一个以节点为圆心、以其感知距离为半径的圆形区域.通常采用休眠冗余节点[2,7]、
重新调整节点分布[811]或添加新节点[11]等方法实现传感器网络覆盖增强.
实际上,有向感知模型(directional sensing model)也是传感器网络中的一种典型的感知模型[12],即节点的感知范围是一个以节点为圆心、半径为其感知距离的扇形区域.由基于有向感知模型的传感器节点所构成的网络称为有向传感器网络.视频传感器网络是有向传感器网络的一个典型实例.感知模型的差异造成了现有基于全向感知模型的覆盖研究成果不能直接应用于有向传感器网络,迫切需要设计出一系列新方法.
在早期的工作中[13],我们率先开展有向传感器网络中覆盖问题的研究,设计一种基本的有向感知模型,用以刻画视频传感器节点的方向性感知特性,并研究有向传感器网络覆盖完整性以及通信连通性问题.同时,考虑到有向传感器节点传感方向往往具有可调整特性(比如PTZ摄像头的推拉摇移功能),我们进一步提出一种基于图论和计算几何的集中式覆盖增强算法[14],调整方案一经确定,网络中所有有向传感器节点并发地进行传感方向的一次性调整,以此获得网络覆盖性能的增强.但由于未能充分考虑到有向传感器节点局部位置及传感方向信息,因而,该算法对有向传感器网络覆盖增强的能力相对有限.
本文将基本的有向感知模型扩展为方向可调感知模型,研究有向传感器网络覆盖增强问题.首先定义了方向可调感知模型,并分析随机部署策略对有向传感器网络覆盖率的影响.在此基础上,分析了有向传感器网络覆盖增强问题.本文通过引入“质心”概念,将待解决问题转化为质心均匀分布问题,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA(potential field based coverage-enhancing algorithm).质心在虚拟力作用下作扩散运动,逐步消除网络中感知重叠区和盲区,增强整个网络覆盖性能.最后,一系列仿真实验验证了PFCEA算法的有效性.
1 有向传感器网络覆盖增强问题
本节旨在分析和定义有向传感器网络覆盖增强问题.在此之前,我们对方向可调感知模型进行简要介绍.
1.1 方向可调感知模型
不同于目前已有的全向感知模型,方向可调感知模型的感知区域受“视角”的限制,并非一个完整的圆形区域.在某时刻t,有向传感器节点具有方向性感知特性;随着其传感方向的不断调整(即旋转),有向传感器节点有能力覆盖到其传感距离内的所有圆形区域.由此,通过简单的几何抽象,我们可以得到有向传感器节点的方向可调感知模型,如图1所示.
定义1. 方向可调感知模型可用一个四元组P,R, ,
表示.其中,P=(x,y)表示有向传感器节点的位置坐标;R表示节
点的最大传感范围,即传感半径;单位向量 = 为扇形感知区域的中轴线,即节点在某时刻t时的传感方向; 和 分别是单位向量 在X轴和Y轴方向上的投影分量;表示边界距离传感向量 的传感夹角,2代表传感区域视角,记作FOV.
特别地,当=时,传统的全向感知模型是方向可调感知模型的一个特例.
若点P1被有向传感器节点vi覆盖成立,记为viP1,当且仅当满足以下条件:
(1) ,其中, 代表点P1到该节点的欧氏距离;
(2) 与 间夹角取值属于[,].
判别点P1是否被有向传感器节点覆盖的一个简单方法是:如果 且 ,那么,点P1
被有向传感器节点覆盖;否则,覆盖不成立.另外,若区域A被有向传感节点覆盖,当且仅当区域A中任何一个点都被有向传感节点覆盖.除非特别说明,下文中出现的“节点”和“传感器节点”均满足上述方向可调感知模型.
1.2 有向传感器网络覆盖增强问题的分析与定义
在研究本文内容之前,我们需要作以下必要假设:
A1. 有向传感器网络中所有节点同构,即所有节点的传感半径(R)、传感夹角()参数规格分别相同;
A2. 有向传感器网络中所有节点一经部署,则位置固定不变,但其传感方向可调;
A3. 有向传感器网络中各节点都了解自身位置及传感方向信息,且各节点对自身传感方向可控.
假设目标区域的面积为S,随机部署的传感器节点位置满足均匀分布模型,且目标区域内任意两个传感器节点不在同一位置.传感器节点的传感方向在[0,2]上也满足均匀分布模型.在不考虑传感器节点可能落入边界区域造成有效覆盖区域减小的情况下,由于每个传感器节点所监控的区域面积为R2,则每个传感器节点能监测整个目标区域的概率为R2/S.目标区域被N个传感器节点覆盖的初始概率p0的计算公式为(具体推导过程参见文献[14])
(1)
由公式(1)可知,当目标区域内网络覆盖率至少达到p0时,需要部署的节点规模计算公式为
(2)
当网络覆盖率分别为p0和p0+p时,所需部署的传感器节点数目分别为ln(1p0)/,ln(1(p0+p))/.其中, =ln(SR2)lnS.因此,传感器节点数目差异N由公式(3)可得,
(3)
当目标区域面积S、节点传感半径R和传感夹角一定时,为一常数.此时,N与p0,p满足关系如图2所示(S=500500m2,R=60m,=45º).从图中我们可以看出,当p0一定时,N随着p的增加而增加;当p一定时,N随着p0的增加而增加,且增加率越来越大.因此,当需要将覆盖率增大p时,则需多部署N个节点(p0取值较大时(80%),p取值每增加1%,N就有数十、甚至数百的增加).如果采用一定的覆盖增强策略,无须多部署节点,就可以使网络覆盖率达到p0+p,大量节省了传感器网络部署成本.
设Si(t)表示节点vi在传感向量为 时所覆盖的区域面积.运算操作Si(t)Sj(t)代表节点vi和节点vj所能覆盖到的区域总面积.这样,当网络中节点传感向量取值为 时,有向传感器网络覆盖率可表
示如下:
(4)
因此,有向传感器网络覆盖增强问题归纳如下:
问题:求解一组 ,使得对于初始的 ,有 取值
接近最大.
Fig.2 The relation among p0, p and N
图2 p0,p和N三者之间的关系
2 基于虚拟势场的覆盖增强算法
2.1 传统虚拟势场方法
虚拟势场(virtual potential field)的概念最初应用于机器人的路径规划和障碍躲避.Howard等人[8]和Pori等人[9]先后将这一概念引入到传感器网络的覆盖增强问题中来.其基本思想是把网络中每个传感器节点看作一个虚拟的电荷,各节点受到其他节点的虚拟力作用,向目标区域中的其他区域扩散,最终达到平衡状态,即实现目标区域的充分覆盖状态.Zou等人[15]提出了一种虚拟力算法(virtual force algorithm,简称VFA),初始节点随机部署后自动完善网络覆盖性能,以均匀网络覆盖并保证网络覆盖范围最大化.在执行过程中,传感器节点并不移动,而是计算出随机部署的传感器节点虚拟移动轨迹.一旦传感器节点位置确定后,则对相应节点进行一次移动操作.Li等人[10]为解决传感器网络布局优化,在文献[15]的基础上提出了涉及目标的虚拟力算法(target involved virtual force algorithm,简称TIVFA),通过计算节点与目标、热点区域、障碍物和其他传感器之间的虚拟力,为各节点寻找受力平衡点,并将其作为该传感器节点的新位置.
上述利用虚拟势场方法优化传感器网络覆盖的研究成果都是基于全向感知模型展开的.假定传感器节点间存在两种虚拟力作用:一种是斥力,使传感器节点足够稀疏,避免节点过于密集而形成感知重叠区域;另一种是引力,使传感器节点保持一定的分布密度,避免节点过于分离而形成感知盲区[15].最终利用传感器节点的位置移动来实现传感器网络覆盖增强.
2.2 基于虚拟势场的有向传感器网络覆盖增强算法
在实际应用中,考虑到传感器网络部署成本,所有部署的传感器节点都具有移动能力是不现实的.另外,传感器节点位置的移动极易引起部分传感器节点的失效,进而造成整个传感器网络拓扑发生变化.这些无疑都会增加网络维护成本.因而,本文的研究工作基于传感器节点位置不变、传感方向可调的假设.上述假设使得直接利用虚拟势场方法解决有向传感器网络覆盖增强问题遇到了麻烦.在传统的虚拟势场方法中,传感器节点在势场力的作用下进行平动(如图3(a)所示),而基于本文的假设,传感器节点表现为其扇形感知区域在势场力的作用下以传感器节点为轴心进行旋转(如图3(b)所示).
为了简化扇形感知区域的转动模型,我们引入“质心(centroid)”的概念.质心是质点系中一个特定的点,它与物体的平衡、运动以及内力分布密切相关.传感器节点的位置不变,其传感方向的不断调整可近似地看作是扇形感知区域的质心点绕传感器节点作圆周运动.如图3(b)所示,一个均匀扇形感知区域的质心点位于其对称轴上且与圆心距离为2Rsin/3.每个传感器节点有且仅有一个质心点与其对应.我们用c表示传感器节点v所对应的质心点.本文将有向传感器网络覆盖增强问题转化为利用传统虚拟势场方法可解的质心点均匀分布问题,如图4所示.
Fig.3 Moving models of sensor node
图3 传感器节点的运动模型
Fig.4 The issue description of coverage enhancement in directional sensor networks
图4 有向传感器网络覆盖增强问题描述
2.2.1 受力分析
利用虚拟势场方法增强有向传感器网络覆盖,可以近似等价于质心点-质心点(c-c)之间虚拟力作用问题.我们假设质心点-质心点之间存在斥力,在斥力作用下,相邻质心点逐步扩散开来,在降低冗余覆盖的同时,逐渐实现整个监测区域的充分高效覆盖,最终增强有向传感器网络的覆盖性能.在虚拟势场作用下,质心点受来自相邻一个或多个质心点的斥力作用.下面给出质心点受力的计算方法.
如图5所示,dij表示传感器节点vi与vj之间的欧氏距离.只有当dij小于传感器节点传感半径(R)的2倍时,它们的感知区域才存在重叠的可能,故它们之间才存在产生斥力的作用,该斥力作用于传感器节点相应的质心点ci和cj上.
定义2. 有向传感器网络中,欧氏距离不大于节点传感半径(R)2倍的一对节点互为邻居节点.节点vi的邻居节点集合记作i.即i={vj|Dis(vi,vj)2R,ij}.
我们定义质心点vj对质心点vi的斥力模型 ,见公式(5).
(5)
其中,Dij表示质心点ci和cj之间的欧氏距离;kR表示斥力系数(常数,本文取kR=1);ij为单位向量,指示斥力方向(由质心点cj指向ci).公式(5)表明,只有当传感器节点vi和vj互为邻居节点时(即有可能形成冗余覆盖时),其相应的质心点ci和cj之间才存在斥力作用.质心点所受斥力大小与ci和cj之间的欧氏距离成反比,而质心点所受斥力方向由ci和cj之间的相互位置关系所决定.
质心点ci所受合力是其受到相邻k个质心点排斥力的矢量和.公式(6)描述质心点ci所受合力模型 .
(6)
通过如图6所示的实例,我们分析质心点的受力情况.图中包括4个传感器节点:v1,v2,v3和v4,其相应的质心
点分别为c1,c2,c3和c4.以质心点c1为例,由于d122R,故 ,质心点c1仅受到来自质心点c3和c4的斥力,其所受合力 .传感器节点传感方向旋转导致质心点的运动轨迹并不是任意的,而是固定绕传感器节点作圆周运动.因此,质心点的运动仅仅受合力沿圆周切线方向分量 的影响.
Fig.6 The force on centroid
图6 质心点受力
2.2.2 控制规则(control law)
本文基于一个虚拟物理世界研究质心点运动问题,其中作用力、质心点等都是虚拟的.该虚拟物理世界的构建是建立在求解问题特征的基础上的.在此,我们定义控制规则,即规定质心点受力与运动之间的关系,以达到质心点的均匀分布.
质心点在 作用下运动,受到运动学和动力学的双重约束,具体表现如下:
(1) 运动学约束
在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,由于传感器节点向任意方向运动的概率是等同的,我们大都忽略其所受的运动学约束[8].而在转动模型中,质心点的运动不是任意方向的,受合力沿圆
周切线方向分量 的影响,只能绕其传感器节点作圆周运动.
质心点在运动过程中受到的虚拟力是变化的,但对传感器网络系统来说,传感器节点之间每时每刻都交换邻居节点位置及传感方向信息是不现实的.因此,我们设定邻居节点间每隔时间步长t交换一次位置及传感方向信息,根据交换信息计算当前时间步长质心点所受合力,得出转动方向及弧长.同时,问题求解的目的在于将节点的传感方向调整至一个合适的位置.在此,我们不考虑速度和加速度与转动弧长之间的关系.
(2) 动力学约束
动力学约束研究受力与运动之间的关系.本运动模型中的动力学约束主要包含两方面内容:
• 每个时间步长t内,质心点所受合力与转动方向及弧长之间的关系;
• 质心点运动的静止条件.
在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,在每个时间步长内,传感器节点的运动速度受限于最大运动速度vmax,而不是随传感器节点受力无止境地增加.通过此举保证微调方法的快速收敛.在本转动模型中,我们同样假设质心点每次固定以较小的转动角度进行转动,通过多次微调方法逐步趋向最优解,即在每个时间步长t内,质心点转动的方向沿所受合力在圆周切线方向分量,转动大小不是任意的,而是具有固定转动角度.采用上述方法的原因有两个:
• 运动过程中,质心点受力不断变化,且变化规律很难用简单的函数进行表示,加之上述运动学约束和问题特征等因素影响,我们很难得出一个简明而合理的质心点所受合力与转动弧长之间的关系.
• 运动过程中,质心点按固定角度进行转动,有利于简化计算过程,减少节点的计算负担.同时,我们通过分析仿真实验数据发现,该方法具有较为理想的收敛性(具体讨论参见第3.2节).
固定转动角度取值不同对PFCEA算法性能具有较大的影响,这在第3.3节中将加以详细的分析和说明.
当质心点所受合力沿圆周切线方向分量为0时,其到达理想位置转动停止.如图7所示,我们假定质心点在圆周上O点处合力切向分量为0.由于质心点按固定转动角度进行转动,因此,它
未必会刚好转动到O点处.当质心点处于图7中弧 或 时,会
因合力切向分量不为0而导致质心点围绕O点附近往复振动.因此,为避免出现振动现象,加速质心点达到稳定状态,我们需要进一步限定质心点运动的停止条件.
当质心点围绕O点附近往复振动时,其受合力的切向分量很
小.因此,我们设定受力门限,当 (本文取=10e6),即可认
定质心点已达到稳定状态,无须再运动.经过数个时间步长t后,当网络中所有质心点达到稳定状态时,整个传感器网络即达到稳定状态,此时对应的一组 ,该
组解通常为本文覆盖增强的较优解.
2.3 算法描述
基于上述分析,本文提出了基于虚拟势场的网络覆盖增强算法(PFCEA),该算法是一个分布式算法,在每个传感器节点上并发执行.PFCEA算法描述如下:
输入:节点vi及其邻居节点的位置和传感方向信息.
输出:节点vi最终的传感方向信息 .
1. t0; //初始化时间步长计数器
2. 计算节点vi相应质心点ci初始位置 ;
3. 计算节点vi邻居节点集合i,M表示邻居节点集合中元素数目;
4. While (1)
4.1 tt+1;
4.2 ;
4.3 For (j=0; j<M; j++)
4.3.1 计算质心点cj对ci的当前斥力 ,其中,vji;
4.3.2 ;
4.4 计算质心点ci当前所受合力 沿圆周切线分量 ;
4.5 确定质心点ci运动方向;
4.6 If ( ) Then
4.6.1 质心点ci沿 方向转动固定角度;
4.6.2 调整质心点ci至新位置 ;
4.6.3 计算节点vj指向当前质心点ci向量并单位化,得到节点vi最终的传感方向信息 ;
4.7 Sleep (t);
5. End.
3 算法仿真与性能分析
我们利用VC6.0自行开发了适用于传感器网络部署及覆盖研究的仿真软件Senetest2.0,并利用该软件进行了大量仿真实验,以验证PFCEA算法的有效性.实验中参数的取值见表1.为简化实验,假设目标区域中所有传感器节点同构,即所有节点的传感半径及传感夹角规格分别相同.
Table 1 Experimental parameters
表1 实验参数
Parameter Variation
Target area S 500500m2
Area coverage p 0~1
Sensor number N 0~250
Sensing radius Rs 0~100m
Sensing offset angel 0º~90º
3.1 实例研究
在本节中,我们通过一个具体实例说明PFCEA算法对有向传感器网络覆盖增强.在500500m2的目标区域内,我们部署传感半径R=60m、传感夹角=45º的传感器节点完成场景监测.若达到预期的网络覆盖率p=70%, 通过公式(1),我们可预先估算出所需部署的传感器节点数目,
.
针对上述实例,我们记录了PFCEA算法运行不同时间步长时有向传感器网络覆盖增强情况,如图8所示.
(a) Initial coverage, p0=65.74%
(a) 初始覆盖,p0=65.74% (b) The 10th time step, p10=76.03%
(b) 第10个时间步长,p10=76.03%
(c) The 20th time step, p20=80.20%
(c) 第20个时间步长,p20=80.20% (d) The 30th time step, p30=81.45%
(d) 第30个时间步长,p30=81.45%
Fig.8 Coverage enhancement using PFCEA algorithm
图8 PFCEA算法实现覆盖增强
直观看来,质心点在虚拟斥力作用下进行扩散运动,逐步消除网络中感知重叠区和盲区,最终实现有向传感器网络覆盖增强.此例中,网络传感器节点分别经过30个时间步长的调整,网络覆盖率由最初的65.74%提高到81.45%,网络覆盖增强达15.71个百分点.
图9显示了逐个时间步长调整所带来的网络覆盖增强.我们发现,随着时间步长的增加,网络覆盖率也不断增加,且近似满足指数关系.当时间步长达到30次以后,网络中绝大多数节点的传感方向出现振动现象,直观表现为网络覆盖率在81.20%附近在允许的范围振荡.此时,我们认定有向传感器网络覆盖性能近似增强至最优.
网络覆盖性能可以显着地降低网络部署成本.实例通过节点传感方向的自调整,在仅仅部署105个传感器节点的情况下,最终获得81.45%的网络覆盖率.若预期的网络覆盖率为81.45%,通过公式(1)的计算可知,我们至少需要部署148个传感器节点.由此可见,利用PFCEA算法实现网络覆盖增强的直接效果是可以节省近43个传感器节点,极大地降低了网络部署成本.
3.2 收敛性分析
为了讨论本文算法的收敛性,我们针对4种不同的网络节点规模进行多组实验.我们针对各网络节点规模随机生成10个拓扑结构,分别计算算法收敛次数,并取平均值,实验数据见表2.其他实验参数为R=60m,=45º, =5º.
Table 2 Experimental data for convergence analysis
表2 实验数据收敛性分析
(%)
(%)
1 50 41.28 52.73 24
2 70 52.74 64.98 21
3 90 60.76 73.24 28
4 110 65.58 78.02 27
分析上述实验数据,我们可以得出,PFCEA算法的收敛性即调整的次数,并不随传感器网络节点规模的变化而发生显着的改变,其取值一般维持在[20,30]范围内.由此可见,本文PFCEA算法具有较好的收敛性,可以在较短的时间步长内完成有向传感器网络的覆盖增强过程.
3.3 仿真分析
在本节中,我们通过一系列仿真实验来说明4个主要参数对本文PFCEA算法性能的影响.它们分别是:节点规模N、传感半径R、传感夹角和(质心点)转动角度.针对前3个参数,我们与以往研究的一种集中式覆盖增强算法[14]进行性能分析和比较.
A. 节点规模N、传感半径R以及传感角度
我们分别取不同节点规模进行仿真实验.从图10(a)变化曲线可以看出,当R和一定时,N取值较小导致网络初始覆盖率较小.此时,随着N的增大,p取值呈现持续上升趋势.当N=200时,网络覆盖率增强可达14.40个百分点.此后,p取值有所下降.这是由于当节点规模N增加导致网络初始覆盖率较高时(如60%),相邻多传感器节点间形成覆盖盲区的概率大为降低,无疑削弱了PFCEA算法的性能.另外,部分传感器节点落入边界区域,也会间接起到削弱PFCEA算法性能的作用.
另外,传感半径、传感角度对PFCEA算法性能的影响与此类似.当节点规模一定时,节点传感半径或传感角度取值越小,单个节点的覆盖区域越小,各相邻节点间形成感知重叠区域的可能性也就越小.此时,PFCEA算法对网络覆盖性能改善并不显着.随着传感半径或传感角度的增加,p不断增加.当R=70m且=45º时,网络覆盖率最高可提升15.91%.但随着传感半径或传感角度取值的不断增加,PFCEA算法带来的网络覆盖效果降低,如图10(b)、图10(c)所示.
(c) The effect of sensing offset angle , other parameters meet N=100, R=40m, =5º
(c) 传感角度的影响,其他实验参数满足:N=100,R=40m,=5º
❿ 大学生创新创业实验设备
产品创新点
● 实验箱采用纯模块化设计,单个传感器节点分为节点底板、射频模块和传感器模块三部分,各模块均采用可插拔方式,扩展性强,易维修维护升级。
● 实验箱标配WiFi、Zigbee、433MHz、蓝牙等主流局域网无线通信模块。
● 传感器种类丰富涵盖了电容式传感器、电阻式传感器、光敏传感器、气敏传感器等十余种不同种类的传感器。
● 实验箱搭配高效能Cortex-A9开发板搭载Android操作系统,可独立Android App软件开发平台使用,大大增加了实验箱的实用性。
● 在一个实验箱内完整的体现了物联网的三层结构-感知层、网络层和应用层。从硬件应用到软件设计,一步步引导学生了解整个物联网体系结构。针对不同专业的学生设计了不同的实验题目,包含内容丰富多彩。
● 完整详尽的实验指导书,并提供硬件设备原理图,应用程序源码供学生学习和二次开发。
● 实验箱紧密围绕教育部物联网工程专业培训计划教学大纲进行设计,可以满足<单片机原理与技术>、<传感器原理及应用>、、<物联网通信技术>等物联网工程专业的专业课程实验开设。 飞瑞敖IOT-L02-05型物联网综合实验箱可满足物联网工程专业<单片机原理与技术>、<传感器原理与应用>、<Zigbee无线传感网原理与应用>以及<物联网通信技术>等专业课程的实验开设。