导航:首页 > 无线网络 > 无线传感器网络模型

无线传感器网络模型

发布时间:2023-01-21 00:09:48

‘壹’ ZigBee无线传感器网络拓扑结构有哪几种

ZigBee技术具有强大的组网能力,可以形成星型、树型和网状网,可以根据实际项目需要来选择合适的网络结构;星型和族树型网络适合点多多点、距离相对较近的应用。

ZigBee节点是可以组建Mesh网络的,设置一个ZigBee节点为网络协调器,其他每个ZigBee节点都可以当做路由节点来使用,也可以设置为终端节点但是就失去了路由功能。由于ZIGBEE一般都是用2。4G频段传输,其实际应用中传输距离及穿透性都很差,一般只能传输几十米到上百米。

(1)无线传感器网络模型扩展阅读:

相较于传统式的网络和其他传感器相比,无线传感器网络有以下特点:

(1)组建方式自由。无线网络传感器的组建不受任何外界条件的限制,组建者无论在何时何地,都可以快速地组建起一个功能完善的无线网络传感器网络,组建成功之后的维护管理工作也完全在网络内部进行。

(2)网络拓扑结构的不确定性。从网络层次的方向来看,无线传感器的网络拓扑结构是变化不定的,例如构成网络拓扑结构的传感器节点可以随时增加或者减少,网络拓扑结构图可以随时被分开或者合并。

‘贰’ 无线传感器网络节点硬件的模块化设计

无线传感器网络节点硬件的模块化设计

随着人们对于环境监测要求的不断提高,无线传感器网络技术以其投资成本低、架设方便、可靠性高的性能优势得到了比较广泛的应用。由于无线传感器网络节点需要实现采集、处理、通信等多个功能,因此硬件上采用模块化设计可以大大提高网络节点的稳定性和安全性。那么下面我就来讨论一下无线传感器网络节点硬件的模块化设计。

1 CC2430芯片简介

CC2430是一款工作在2.4 GHz免费频段上,支持IEEE 802.15.4标准的无线收发芯片。该芯片具有很高的集成度,体积小功耗低。单个芯片上整合了ZigBee射频(RF)前端、内存和微控制器。CC2430拥有1个8位MCU(8051),8 KB的RAM,32 KB、64 KB或128 KB的Flash,还包含模拟数字转换器(ADC),4个定时器(Timer),AESl28协处理器,看门狗定时器(Watchdog-timer),32.768 kHz晶振的休眠模式定时器,上电复位电路(Power-on-Reset),掉电检测电(Brown-out-Detection),以及21个可编程I/O接口。

CC2430芯片采用0.18μm CMOS工艺生产,工作时的电流损耗为27 mA;在接收和发射模式下,电流损耗分别为26.7 mA和26.9 mA;休眠时电流为O.5 μA。CC2430的休眠模式和转换到主动模式的超短时间的特性,特别适合那些要求电池寿命非常长的应用。

2 无线传感器网络系统结构

整个无线传感器网络由若干采集节点、1个汇聚节点、1个中转器、1个上位机控制中心组成,系统结构如图1所示。无线传感器网络采集节点完成数据采集、预处理和通信工作;汇聚节点负责网络的发起和维护,收集并上传数据,将中转器下发的命令通告采集节点;中转器负责上传收集到的数据并将控制中心发出的命令信息传递给汇聚节点;控制中心负责处理最终上传数据,并且可以由用户下达网络的操作命令。

采集节点和汇聚节点由CC2430作为控制核心,采集节点可采集并传递数据,汇聚节点负责收集所有采集节点采集到的数据。中转器采用ARM处理器作为控制核心,和汇聚节点采用串口通信,以GPRS通信方式和上位机控制中心进行交互。上位机控制中心实现人机交互,可以处理、显示上传的数据并且可以直接由客户下达网络动作执行命令。

3 节点模块化设计

汇聚节点和采集节点在硬件配置上基本相同,采用模块化设计使得设计通用性更好。

每个节点主要由控制模块、无线模块、采集模块、电源模块4部分构成。

3.1 控制模块

控制模块主要由CC2430及其外围电路构成,完成对采集数据的处理、存储以及收发工作,并对电源模块进行管理。芯片CC2430包括21个可编程I/0口,其中8路A/D接口,可满足多路传感器的采集、处理需求。CC2430自带了一个复位接口,外接一个复位按键可以实现硬件初始化系统。32 MHz晶振提供系统时钟,32.768 kHz晶振供系统休眠时使用。

节点选用芯片FM25L256作为存储设备,这是一款256 Kb铁电存储器,其SPI接口频率高达25 MHz,低功耗运行以及10年的数据保持力保证了节点数据存储的低成本以及可靠性。

3.2 无线模块

无线模块负责节点间数据和命令的传输,因此,合理设计无线模块是节点稳定、高效通信的重要保证。

TI公司提供了一个适用于CC2430的微带巴伦电路,这个设计把无线电RF引脚差分信号的阻抗转换为单端50 Ω。由于该电路直接影响节点的通信质量,在使用前必须对其进行仿真验证。设计中选用ADS仿真软件进行仿真,采用了版图和原理图的联合仿真方法。仿真电路图如图5所示,微带电路为TI提供的微带巴伦电路,分立元件均选自村田公司元件库内的模型,严格保证了仿真数据的`真实性和可靠性。巴伦电路在工作频段内(2.400~2.4835 GHz)信号传输特性高效、稳定。

3.3 采集模块

采集模块负责采集数据并调理数据信号。本设计中,监测的是土壤的温度和湿度数据,采用的传感器是PTWD-3A型土壤温度传感器以及TDR-3型土壤水分传感器。

PTWD-3A型土壤温度传感器采用精密铂电阻作为感应部件,其阻值随温度变化而变化。为了准确地进行测量,采用四线法测量电阻原理,将电阻信号调理成CC2430芯片A/D通道能采样的电压信号。由P354运算放大器、高精度精密贴片电阻以及2.5 V电源构成10 mA恒流源。10 mA的电流环流经传感器电阻R1、R2将电阻信号转换成为电压信号,由差分放大器LT1991一倍增益将信号转换为单端输出送入CC2430芯片的ADC通道进行采样。

TDR-3型土壤水分传感器输出信号即为电压信号。传感器输出信号通过P354运算放大器送入CC2430芯片的ADC通道进行采样。

3.4 电源模块

电源模块负责调理电压、分配能量,分为充电管理模块、双电源切换管理模块、电压转换模块3个模块。本设计中采用额定电压12 V、电容量3 Ah的铅酸电池供电。

作为环境监测的无线传感器网络应用,节点需要在野外无人看守的情况下进行工作,能量补给是系统持续工作的重要保证。本设计采用太阳能电池板为节点在野外工作时进行电能的补给,充电管理模块则是根据日照情况以及电池能量状态对铅酸电池进行合理、有效的充电。光电耦合器TLP521-100和场效应管Q共同构成了充电模块的开关电路,可以由CC2430芯片的I/0口很方便地进行控制。

在太阳能电池板对电池充电时,电池不能对系统进行供电,因此设计中采用了双电源供电方式,保持“一充一供”的工作状态,双电源切换管理模块负责电源的安全、快速切换。如图10所示,采用了两个开关电路对两块电源进行切换。

在电源进行切换时,总是先打开处于闲置状态的电源,再关闭正在为系统供电的电源,因此会在一段短暂的时间内同时有两个电源对系统供电,这是为了防止系统出现掉电情况。

电源模块需提供5 V、3.3 V、2.5 V等多组电源以满足节点各模块的供能需求。由于系统电源组较多,电压转换模块采用了开关型降压稳压器以及低压差线性稳压器等多种电压转换芯片来对电源进行电压转换,同时要确保电源模块供能的高效性。

结语

节点的设计对整个无线传感器网络系统至关重要。本设计采用了功能强大的射频芯片CC2430作为核心管理芯片,能较好地完成数据采集、分析、传输等多个功能。硬件的模块化设计大大加强了节点的稳定性、可靠性和通用性,在野外无人值守的情况下无线传感器网络系统可以长期、稳定地进行环境方面的监测。

;

‘叁’ 无线传感器网络一般是采用什么能量模型和传输模型来评做能量消耗的大小

一阶无线电模型:发送能耗+接收能耗+传输能耗,还要乘以相应的系数

‘肆’ 简述无线传感器应用的开发过程,系统仿真常用哪些软件平台

MantisOS的无线传感器网络应用开发模型
无线传感器网络是当今信息领域新的研究方向,应用前景十分广阔.考虑无线传感器网络的应用相关性,总结无线传感器网络应用程序开发研究经验,引入软件工程思想,提出一个无线传感器网络应用开发过程模型,可以提高开发速度和开发质量;随后给出了一个在MantisOS下开发应用程序的技术模型,降低了使用MantisOS的线程管理机制开发多任务应用程序可能出现的线程上下文切换开销

‘伍’ 无线传感器网络的特点与应用

无线传感器网络是一种新型的传感器网络,其主要是由大量的传感器节点组成,利用无线网络组成一个自动配置的网络系统,并将感知和收集到的信息发给管理部门。目前无线传感器网络在军事、生态环境、医疗和家居方面都有一定应用,未来无线传感器网络的发展前景将是不可估量的。

一、无线传感器网络的特点

(一)节点数量多

在监测区通常都会安置许多传感器节点,并通过分布式处理信息,这样就能够提高监测的准确性,有效获取更加精确的信息,并降低对节点传感器的精度要求。此外,由于节点数量多,因此存在许多冗余节点,这样就能使系统的容错能力较强,并且节点数量多还能够覆盖到更广阔的监测区域,有效减少监测盲区。

(二)动态拓扑

无线传感器网络属于动态网络,其节点并非固定的。当某个节电出现故障或是耗尽电池后,将会退出网络,此外,还可能由于需要而被转移添加到其他的网络当中。

(三)自组织网络

无线传感器的节点位置并不能进行精确预先设定。节点之间的相互位置也无法预知,例如通过使用飞机播散节点或随意放置在无人或危险的区域内。在这种情况下,就要求传感器节点自身能够具有一定的组织能力,能够自动进行相关管理和配置。

(四)多跳路由

无线传感网络中,节点之间的距离通常都在几十到几百米,因此节点只能与其相邻的节点进行直接通信。如果需要与范围外的节点进行通信,就需要经过中间节点进行路由。无线传感网络中的多跳路由并不是专门的路由设备,所有传输工作都是由普通的节点完成的。

(五)以数据为中心

无线传感网络中的节点均利用编号标识。由于节点是随机分布的,因此节点的编号和位置之间并没有联系。用户在查询事件时,只需要将事件报告给网络,并不需要告知节点编号。因此这是一种以数据为中心进行查询、传输的方式。

(六)电源能力局限性

通常都是用电池对节点进行供电,而每个节点的能源都是有限的,因此一旦电池的能量消耗完,就是造成节点无法再进行正常工作。

二、无线传感器网络的应用

(一)环境监测应用

无线传感器可以用于进行气象研究、检测洪水和火灾等,在生态环境监测中具有明显优势。随着我国市场经济的不断发展,生态环境污染问题也越来越严重。我国是一个幅员辽阔、资源丰富的农业大国,因此在进行农业生产时利用无线传感器进行对生产环境变化进行监测能够为农业生产带来许多好处,这对我国市场经济的'不断发展有着重要意义。

(二)医疗护理应用

无线传感器网络通过使用互联网络将收集到的信息传送到接受端口,例如一些病人身上会有一些用于监测心率、血压等的传感器节点,这样医生就可以随时了解病人的病情,一旦病人出现问题就能够及时进行临时处理和救治。在医疗领域内传感器已经有了一些成功案例,例如芬兰的技术人员设计出了一种可以穿在身上的无线传感器系统,还有SSIM(Smart Sensors and Integrated Microsystems)等。

(三)智能家居建筑应用

文物保护单位的一个重要工作就是要对具有意义的古老建筑实行保护措施。利用无线传感器网络的节点对古老建筑内的温度是、湿度、关照等进行监测,这样就能够对建筑物进行长期有效的监控。对于一些珍贵文物的保存,对保护地的位置、温度和湿度等提前进行检测,可以提高展览品或文物的保存品质。例如,英国一个博物馆基于无线传感器网络设计了一个警报系统,利用放在温度底部的节点检测灯光、振动等信息,以此来保障文物的安全[5]。

目前我国基础建设处在高速发展期,建设单位对各种建设工程的安全施工监测越来越关注。利用无线传感器网络使建筑能够检测到自身状况并将检测数据发送给管理部门,这样管理部门就能够及时掌握建筑状况并根据优先等级来处理建筑修复工作。

另外,在家具或家电汇中设置无线传感器节点,利用无线网络与互联网络,将家居环境打造成一个更加舒适方便的空间,为人们提供更加人性化和智能化的生活环境。通过实时监测屋内温度、湿度、光照等,对房间内的细微变化进行监测和感知,进而对空调、门窗等进行智能控制,这样就能够为人们提供一个更加舒适的生活环境。

(四)军事应用

无线传感器网络具有低能耗、小体积、高抗毁等特性,且其具有高隐蔽性和高度的自组织能力,这为军事侦察提供有效手段。美国在20世纪90年代就开始在军事研究中应用无线传感器网络。无线传感器网络在恶劣的战场内能够实时监控区域内敌军的装备,并对战场上的状况进行监控,对攻击目标进行定位并能够检测生化武器。

目前无线传感器网络在全球许多国家的军事、研究、工业部门都得到了广泛的关注,尤其受到美国国防部和军事部门的重视,美国基于C4ISR又提出了C4KISR的计划,对战场情报的感知和信息综合能力又提出新的要求,并开设了如NSOF系统等的一系列军事无线传感器网络研究。

总之,随着无线传感器网络的研究不断深入和扩展,人们对无线传感器的认识也越来越清晰,然而目前无线传感器网络的在技术上还存在一定问题需要解决,例如存储能力、传输能力、覆盖率等。尽管无线传感器网络还有许多技术问题待解决使得现在无法广泛推广和运用,但相信其未来发展前景不可估量。

‘陆’ 无线传感器网络体系结构包括哪些部分

传感器网络系统通常包括传感器节点(sensor)、汇聚节点(sink node)和管理节点。大量传感器节点随机部署在监测区域(sensor field)内部或附近,能够通过自组织方式构成网络。传感器节点监测的数据沿着其他传感器节点逐跳地进行传输,在传输过程中监测数据可能被多个节点处理,经过多跳后路由到汇聚节点,最后通过互联网或卫星到达管理节点。用户通过管理节点对传感器网络进行配置和管理,发布监测任务以及收集监测数据。 传感器网络节点的组成和功能包括如下四个基本单元:传感单元(由传感器和模数转换功能模块组成)、处理单元(由嵌入式系统构成,包括CPU、存储器、嵌入式操作系统等)、通信单元(由无线通信模块组成)、以及电源部分。此外,可以选择的其它功能单元包括:定位系统、运动系统以及发电装置等。

‘柒’ 无线传感器网络的时间同步模型经历了哪三种模型的演变

前中后。无线传感器网络的时间同步模型经历了前中后三种模型的演变。通过主观意识借助实体或者虚拟表现,构成客观阐述形态结构的一种表达目的的物件(物件并不等于物体,不局限于实体与虚拟、不限于平面与立体)。

‘捌’ 无线传感器网络中多sink节点优化部署方法

无线传感器网络中多sink节点优化部署方法——刘强,毛玉明等

        大规模无线传感器网络(WSN)环境下,当网络结构采用单一的sink节点时,容易造成sink节点周围的普通传感节点因为转发大量其他节点的数据,迅速消耗摔自身能量而使网络失效。为了延长网络寿命,需要降低传感节点到sink节点的跳数,而采用多sink结构是一个有效的方法。为此,需要考虑一定规模的网络中,应该布置多少sink节点,才能使得网络寿命最大化的同时网络成本最低。基于栅格网络结构,提出了多sink节点下的网络寿命模型和网络成本模型,并采用一种新颖的方法计算最大网络寿命成本比(RLC),推导出了保证网络寿命最大化的同时网络成本最低的sink节点个数的表达式。

        无线传感器网络(Wireless Sensor Network,WSN)的应用已经越来越普及,但仍然有很多问题需要解决。在大规模无线传感器网络环境下,当网络中采用单一sink节点时,由于普通传感节点距离sink较远,会通过多跳方式将传感信息送给sink节点,sink周围节点不得不转发大量普通节点的数据,消耗大量能鼍。因此这些节点会最先消耗完能量而死亡。当sink节点周围的普通节点都死亡,其他节点就无法将数据送到sink节点上去,导致网络失效。

        为了延长网络寿命,需要减少普通节点到sink节点的跳数,在网络中布置多个sink节点,是一种有效的方法。然而与普通传感器节点的小功耗、低成本不同,sink节点要进行复杂的数据处理,通常是高能耗、造价昂贵的节点。因此在网络中布置这些sink节点存在成本问题。
        网络会呈现出这样的特性:当向网络中增加少量sink节点时,能有效降低普通节点到sink的平均跳数,网络寿命会有很大提高;当放置更多的sink节点时,对网络平均跳数的降低效果越来越小,网络寿命的增长也越来越缓慢。当sink节点数增加到一定数目时,所有节点到sink节点的跳数均为一跳时,再增加sink节点个数,网络寿命则不再增加。而随着sink个数的增加,网络成本会大幅增加。因此应该存在一个最佳的sink节点数目,使得网络寿命和网络成本之间有一个平衡的最优效果。

        采用网络寿命与网络成本的比值——网络寿命成本比(Ratio of Lifetime to Cost,RLC)来衡量这个效果。换句话说,应该存在一个确定的sink节点数目n,使得网络寿命与网络成本的比值最大。为方便研究,本文采用栅格网络结构,并在sink节点均匀分布的前提下进行研究。

        将网络中的节点分为3种:sink节点、关键节点和普通节点。sink节点是传感信息的最终目的地,多个sink节点均匀地分布在网络中。sink节点周围的一跳节点称为关键节点,所有发向sink节点的数据信息都需要通过关键节点来转发。sink节点增多,关键节点的个数也相应增多。普通节点为距sink一跳以外的其他传感节点,它们只能通过多跳的方式将数据发给sink节点。
        显然,网络的寿命取决于关键节点的寿命。若这些关键节点全部死亡,其他传感节点的信息就无法传到sink节点(只要有一个关键节点存活,数据就可以传到sink节点),则网络寿命结束。
        各个关键节点的死亡时间是不一样的,但在现实当中第一个关键节点与最后一个关键节点死亡的时间相差不会太大。因为当有关键节点先死亡后,它所担负转发的节点会由剩余存活关键节点承担。因此,剩余关键节点的负担增加,会加速它们的死亡。为避免关键节点之间死亡时间不一致给分析带来的复杂性,可以假设关键节点均匀分担所有普通节点的转发任务,所有关键节点消耗均等的能量,最终同时死亡。
        有如下假设:
1.网络结构为栅格结构;
2.多个sink节点在网络中均匀分布,关键节点无重合;
3.所有关键节点死亡时间一致。

图2显示了不同网络代价下的RLC曲线。相应的参数如下:N=81,Ne=8。实际应用中,发送能耗略大于接收能耗,但都在一个数量级上,差别不大,此处收发能耗设为相等不影响结果的正确性。图中CR表示sink节点的成本与普通节点成本的比值。可以看到,该曲线是一个关于n的凸函数,因此一定存在最大值RLC所对应的n值,该值即为最佳的sink节点个数。随着CR的增加,RLC值变小,最大值n也向左移变小,说明网络成本增加时,网络中部署的sink节点应减少。

        此文从无线传感器网络中关键节点的角度建立了网络寿命模型,并提出一个新颖的确定最优sink节点个数的方法。该方法通过求解网络寿命成本比RLC的最大值,确定最佳sink节点个数,从而在延长网络寿命的同时使网络成本最小。
        仿真结果进一步证明了理论分析的正确性。此后可研究随机分布的无线传感器网络下的sink节点个数与网络寿命、成本之间的关系。

‘玖’ 无线传感器网络的连接可靠性模型有哪些

为了解决测量无线传感器网络可靠性的问题,提出一种可靠性评估模型,此模型综合考虑了基于容错的网络抗毁性和基于能效的网络寿命这两个主要因素。通过确定K-覆盖和K-连通,可有效评估自然失效和能量约束条件下的网络可靠性,同时可以延长网络寿命并提高网络的鲁棒性。实验结果表明在无线传感器网络中可靠性与传感器密度存在一定关系。通过实现可靠性模型中的最优化目标,满足了传感器覆盖率和网络连通率要求,提高了无线传感器网络的安全性能。http://www.big-bit.com
无线传感器网络W
SN(w ireless sensor net-w
orks)[1]是由一组稠密布置、随机撒布的传感器组成的无线自组织网络,以其随机布置、自组织、适应苛刻环境等优势,具有在多种场合满足军事信息获取的实时性、准确性、全面性等需求的潜力。然而,在大多数应用环境中对无线传感器网络

‘拾’ 无线传感器网络体系结构包括哪些部分,各部分的

结构
传感器网络系统通常包括传感器节点EndDevice、汇聚节点Router和管理节点Coordinator。
大量传感器节点随机部署在监测区域内部或附近,能够通过自组织方式构成网络。传感器节点监测的数据沿着其他传感器节点逐跳地进行传输,在传输过程中监测数据可能被多个节点处理,经过多跳后路由到汇聚节点,最后通过互联网或卫星到达管理节点。用户通过管理节点对传感器网络进行配置和管理,发布监测任务以及收集监测数据。
传感器节点
处理能力、存储能力和通信能力相对较弱,通过小容量电池供电。从网络功能上看,每个传感器节点除了进行本地信息收集和数据处理外,还要对其他节点转发来的数据进行存储、管理和融合,并与其他节点协作完成一些特定任务。
汇聚节点
汇聚节点的处理能力、存储能力和通信能力相对较强,它是连接传感器网络与Internet
等外部网络的网关,实现两种协议间的转换,同时向传感器节点发布来自管理节点的监测任务,并把WSN收集到的数据转发到外部网络上。汇聚节点既可以是一个具有增强功能的传感器节点,有足够的能量供给和更多的、Flash和SRAM中的所有信息传输到计算机中,通过汇编软件,可很方便地把获取的信息转换成汇编文件格式,从而分析出传感节点所存储的程序代码、路由协议及密钥等机密信息,同时还可以修改程序代码,并加载到传感节点中。
管理节点
管理节点用于动态地管理整个无线传感器网络。传感器网络的所有者通过管理节点访问无线传感器网络的资源。
无线传感器测距
在无线传感器网络中,常用的测量节点间距离的方法主要有TOA(Time
of
Arrival),TDOA(Time
Difference
of
Arrival)、超声波、RSSI(Received
Sig
nalStrength
Indicator)和TOF(Time
of
Light)等。

阅读全文

与无线传感器网络模型相关的资料

热点内容
网络安全落实情况三点意见 浏览:17
第四届全国网络安全挑战赛启动 浏览:349
iwatch能不能共享网络 浏览:819
用了移动网络后还要连网络 浏览:946
如何解决机顶盒网络延迟 浏览:990
公共场所无线网络设置 浏览:915
无线网络半径多少 浏览:710
家用网络监控如何接入大网 浏览:788
网络教育报名官网有哪些 浏览:963
魔百盒网络解锁密码 浏览:577
光纤网络连接电脑不亮 浏览:626
广电网络宽带信号不好有感叹号 浏览:929
路由器网络连接线自营 浏览:140
电脑后面哪个是网络接口 浏览:962
小米手机的六个烂网络不卡的技巧 浏览:139
linkwifi网络设置 浏览:895
网络营销的策略论文 浏览:794
淮北无线网络覆盖 浏览:193
手机怎样解决网络中断的问题 浏览:330
这里的无线网络密码是什么 浏览:192

友情链接