㈠ 群脉冲测试需要注意哪些
电快速脉冲干扰导致设备失效的机理根据国外学者对脉冲群干扰造成设备失效的机理的研究,单个脉冲的能量较小,不会对设备造成故障。但脉冲群干扰信号对设备线路结电容充电,当上面的能量积累到一定程度之后,就可能引起线路(乃至系统)的误动作。接下来我们一起来了解下群脉冲测试需要注意哪些及群脉冲测试需要的工具,希望通过我们的介绍,能够给大家带来一定的帮助。
一、群脉冲测试需要的工具
实践表明,一台设备往往是某一条电缆线,在某一种试验电压,对某个极性特别敏感。实验显示,信号线要比电源线对电快速脉冲干扰敏感得多。
设备通过电快速脉冲测试的有效措施首先我们先分析一下干扰的注入方式:eft干扰信号是通过耦合去耦网络中的33nf的电容耦合到主电源线上面(而信号或控制电缆是通过电容耦合夹施加干扰,等效电容是100pf)。对于33nf的电容,它的截止频率为100k,也就是100khz以上的干扰信号可以通过;而100pf的电容,截止频率为30m,仅允许30mhz频率以上的干扰通过。电快速脉冲的干扰波形为5ns/50ns,重复频率5k,脉冲持续时间15ms,脉冲群重复周期300ms。根据傅立叶变换,它的频谱是从5k--100m的离散谱线,每根谱线的距离是脉冲的重复频率。
知道以上几点,施加干扰的耦合电容扮演了一个高通滤波器的角色,因为电容的阻抗随着频率的升高而下降,那么干扰中的低频成分不会被耦合到eut,而只有频率较高的干扰信号才会进入eut。当我们在eut电路中再加入共模电感(特别要注意的是,这里的共模电感一定要加在主电源线及其回线上,否则会发生饱和从而达不到衰减干扰的目的)就可以衰减掉一些高频干扰成分,因为电感的阻抗随着频率的增加而升高。因此,实际施加到eut上面的干扰信号只有中间频率部分。
二、群脉冲测试需要注意的事项
耦合电容和共模电感组成了一条lc串联谐振电路,谐振点处的干扰信号幅度最强,而如果此时的电快速脉冲波形恰好在过零点,那么eut在谐振频率处不会有问题;但如果谐振频率恰好发生在脉冲的峰值时刻,那么eut就会受到很强的干扰从而失效。
所以,要根据eut对何种干扰频率敏感的特性来调整共模电感的电感量:增大电感值,谐振频率降低,对频率较低的干扰抑制效果好;减小电感值,谐振频率升高,对频率较高的干扰抑制效果明显,从而达到通过群脉冲测试的目的。
㈡ 在建无线网络中,耦合器具体用途跪求详解
耦合器都有个数值 比如5db 10db 指的是信号进入耦合器后的衰减幅度。耦合器的作用是将信号均匀的分配到各个天线处。通俗地讲,信号经过馈线到末端天线,功率必须在核定范围内。一般通过耦合器或者功分器衰减来实现。这东西用在室内分布跟数据通信没关系。属于无线通信范畴。
㈢ 急问!!! 在EMC测试中,可不可以用台性能很高的频谱仪代替接收机耦合去耦网络可以代替LISN吗新手,谢谢
都不行,由于EMC测试用的接收机计算的QP值AV值与频谱仪的原理不一样,如果需要替换还需要在频谱仪的前端加一个预选器才可以,这和仪器的检波方式有关系。而LISN是线性阻抗网络,耦合去偶网络不提供阻抗的匹配,而LISN有150欧母的匹配,计算测试都不一样。都不能替换!
㈣ 经过同一磁环的信号线会通过磁环耦合传递干扰信号吗
如果这两根线是构成了一个回路,根据基尔霍夫定律;流入的电流与流出的电流相等,则这两根线的电流相等,方向相反,在同一磁环里产生的磁通相互抵消。
如果两根线不是同一回路,当一根线有电流时肯定会通过磁耦合给另一根(变压器原理)
漏电保护器结构正是这个方式,零火线同时通过同一磁环,只要其中一根有轻微漏电,不能抵消磁通的话,磁通会感生一个电流给“取样线圈”,吧取样线圈这个电流放大带动脱扣机构工作。
交流调制干扰就是这样产生的。
为什么要穿多根线的弱电工程(哪怕是同一信号源回路,也不会被相互调制)要采用PVC管而不采用钢管?
㈤ 模数混合电路中如何防止数字信号对模拟电路的耦合
模数混合电路中防止数字信号对模拟电路的耦合可以尽可能减小电流环路的面积,系统只采用一个参考面,不能跨越分割间隙布线。PCB设计采用统一地,通过数字电路和模拟电路分区以及合适的信号布线,通常可以解决比较困难的布局布线问题,同时也不会产生因地分割带来的潜在的麻烦。
进行PCB设计的影响因素
由于PCB的导线存在电阻,电感和电容,所以在进行PCB设计时,设计一个纯净的,无阻抗的(理想的)地线和电源线是十分重要的,在模数混合电路设计中采用参考面是替代导线的最好设计,分割是指利用物理上的分割来减少不同类型线之间的耦合,尤其是通过电源线和地线的耦合。
在模数混合电路中,通常采用独立的数字电源和模拟电源分别供电。在模数混合信号的PCB上多采用分割的电源平面。
应注意的是紧邻电源层的信号线不能跨越电源之间的间隙,而只有在紧邻大面积“地”的信号层上的信号线才能跨越该间隙。可以将模拟电源以PCB走线或填充的形式而不是一个电源平面来设计,这样就可以避免电源平面的分割问题了。
㈥ EMC中1.25/50us~8/20us浪涌抗扰度试验
浪涌(冲击)抗扰度试验
电磁兼容 试验和测量技术
浪涌(冲击)抗扰度试验
Electromagnetic compatibility----Testing and measurement techniques Surge immunity test
GB/T17626.5
Idt IEC 61000-4-5
EN 55024
1 范围
本标准目的是为建立一个共同的基准以评定设备在遭受来自电力线和互连线上高能量骚扰
时的性能
在试验室试验的任务就是找出EUT在规定的工作状态下工作时,对由于开头或雷电作用所
产生的有一定危害电平的浪涌电压的反应.
2. 引用标准
GB/T4365-1995 电磁兼容术语
GB/T 16927.1 –1997 高压试验技术 第一部分:一般试验要求
IEC 469-1:1987 脉冲技术和设备 第一部分:脉冲术语和定义
3. 概述
3.1 开关瞬态
系统开关瞬态与以下内容有关:
A) 主电源系统切换骚扰,例如电容器组的切换
B) 配电系统内在仪器附近的轻微开关动作或者负荷变化
C) 与开关装置有关的谐振电路,如晶闸管
D) 各种系统故障,例如对设备组接地系统的短路和电弧故障
3.2 雷电瞬态
雷电产生浪涌电压的主要原理如下:
A) 直接雷击于外部电路,注入的大电流流过接地电阻或外部电路阻抗而产生电压
B) 在建筑物内,外导体上产生感应电压和电流的间接雷击
C) 附近直接对地放电的雷电入地电流耦合到设备组接地系统的公共接地路径
3.3 瞬态的模拟
A) 信号发生器的特性应尽可能地模拟上述现象
B) 如果干扰源与受试设备的端口在同一线路中,例如在电源网络中,那么信号发生器在受试设备的端口能够模拟一个低阻抗源
C) 如果干扰源与受试设备的端口不在同一线路中,那么信号发生器能够模拟一个高阻抗源
4 定义
4.1 平衡线 balanced lines
一对被对称激励的导体,其差模到共模的转换损失小于20dB
4.2 耦合网络 coupling network
将能量从一个电路传到另一个电路的电路
4.3 去耦合网络 decoupling network
用于防止施加到EUT上的浪涌影响其他不作试验的装置,设备或系统的电路
4.4 持续时间 ration
规定波形或特征存在或持续的时间
4.5 EUT equipment under test
受试设备
4.6 波前时间 front time
浪涌电压的波前时间T1是一个虚拟参数,定义为30%峰值和90%峰值两点之间所对应时间间隔T的1.67 倍
浪涌电流的波前时间T1是一个虚拟参数,定义为10%峰值和90%峰值两点之间所对应时间间隔T的1.25 倍
4.7 抗扰度immunity
装置设备或系统面临电磁骚扰不降低运行性能的能力
4.8 电气设备组 electrical installation
用来实现某种特殊目的或多种目的并有协调特性的一组有并电气设备
4.9 互连线 interconnection lines
I/O 线;通信线;平衡线;
4.10 第一级保护 primary protection
防止大部分能量超越指定界面传播的措施
4.11 上升时间 rise time
脉冲瞬时值首次从给定下限值上升到给定上限值所经历的时间
4.12 第二级保护 secondary protection
抑制从第一级保护让通的能量的措施,它可以是一个特殊装置,也可以是EUT固有的特性
4.13 浪涌 surge
沿线路传送的电流,电压或功率的瞬态波,其特性是先快速上升后缓慢下降
4.14 系统 system
通过执行规定的功能 来达到待定的目标的,由相互依赖部分组成的集合
4.15半峰值时间T2 time to half value T2
浪涌的半峰值时间T2是一个虚拟参数,定义为虚拟起点O1和电压下降到半峰值时的
时间间隔
4.16瞬态 transient
在两相邻稳态之间变化的物理或物理现象,其变化时间小于所关注的时间尺度
5 试验等级
优先选择的试验等级的范围.
等级 开路试验电压(±10%)KV
1 0.5
2 1.0
3 2.0
4 4.0
* 特定
6.试验设备
6.1 组合波信号发生器 (1.2/50us~8/20us)
6.1.1 组合波信号发生器的特征与性能
开路输出电压:至少在0.5KV~4.0KV范围内能输出
开路输出电压容差: ±10%
短路输出电流:至少在0.25KA~2.0KA范围内能输出
短路输出电流容差: ±10%
6.1.2 信号发生器特性的校验
6.2 符合CCCITT的10/700us试验信号发生器
6.2.1 信号发生器的特征与性能
开路输出电压:至少在0.5KV~4.0KV范围内能输出
开路输出电压容差: ±10%
短路输出电流:至少在12.5A~100A范围内能输出
短路输出电流容差: ±10%
6.2.2 信号发生器特性的校验
6.3 耦合/去耦网络
6.3.1 用于交/直流电源线的耦合/去耦网络(仅适用于组合波信号发生器)
6.3.1.1 用于电源线的电容耦合
在接入电源去耦网络的同时,还可以通过电容耦合将试验电压按线-线或线-地方式加入
耦合/去耦网络的额定参数:
耦合电容C:9uF或18uF
电源去耦电感L:1.5mH
6.3.1.2 用于电源线的电感耦合
6.3.2 用于互连线的耦合/去耦网络
6.3.2.1 用于互连线的电容耦合
对非屏蔽一平衡I/O线路,当电容耦合对该线上的通信功能没有影响时,适用此方法
电容耦合/去耦网络的额定参数:
耦合电容C:0.5uF
电源去耦电感L:20mH
6.3.2.2 用气体放电管耦合
用气体放电管进行的耦合可以通过并联电容来改善
耦合/去耦网络的额定参数:
耦合电阻Rm2: n*25欧(n>=2)
气体放电管:90V
去耦电感L:20mH
6.3.3 其他耦合方法
7. 试验布置
7.1 试验设备
受试设备,辅助设备.电缆.耦合装置,信号发生器,去耦网络/保护装置
7.2 EUT电源试验的配置
如果没有其他规定,EUT和耦合/去耦网络之间的电源线长度为2m
为模拟典型耦合阻抗,在某些情部下,试验时必须使用附加的规定电阻
7.3 非屏蔽不对称工作互连线试验的配置
7.4 非屏蔽对称工作互连线/通信线试验的配置
此时耦合是由气体放电管来完成的
7.5 屏蔽线试验的配置
7.6 施加电位差的试验配置
7.7 其它试验配置
7.8 试验条件
试验布置;试验程序
8.试验程序
8.1试验室参考条件
8.1.1气候条件
-------环境温度: 15℃~35℃
-------相对湿度: 10%~75%
-------大气压力: 86Kpa~106Kpa
8.1.2 电磁条件
实验室的电磁条件应能保证EUT正常运行,使试验结果不受影响
8.2 在实验室内施加浪涌
试验应根据试验方案进行,方案中应规定以下内容:
信号发生器和其他使用的设备
试验等级
信号发生器
浪涌的极性
信号发生器的内外触发
试验次数:在选定点至少加五次正极性和五次负极性
重复率:最快为每分钟一次
受试的输入端和输出端
EUT的典型工作状态
向线路施加浪涌的顺序
交流电源时的相角
9 试验结果和试验报告
不知你的是什么产品,一般等级三就可以了。不懂去实验室问一下测试的工程师吧