⑴ WiFi信号强度和网速有关系吗
肯定有关系,这决定你的连接速率,显示54M当然更好,显示11M就不好了,显示1M的时候说明信号已经不行了。网速高的时候,信号肯定是比较强的,反之则不一定,需要同时满足,1.信号满足要求,2.路由发送给节点是以高速率(即高MCS)进行发送数据的。首先WIFI信号的强度和速度肯定是有关系的,信号强度越好,速度越高,所以在802.11ac提高速率的同时,采用MIMO来提高信号的强度(主要是Beamforming)。为了细化理解一下,我们首先要从WIFI速率的计算开始(这里以OFDM系列做为例子,802.11b的应用面已经不是特别广,所以不展开,注:802.11b是采用DSSS技术进行传输的,其物理层可以采用barker码,CCK码以及可选PBCC码进行传输,而802.11a/g/n/ac都是基于OFDM进行定义的)。以802.11a速率计算作为例子,其物理层传输速率是通过MCS表进行计算出来的MCS表实际上是描述对应不同速率的调制方式以及编码方式。里每一行决定一种发送速率,不同的发送速率对应不送的信道质量,当信道质量好的时候,发送速率快一些,信道质量差的时候,发送速率慢一些。MCS表中的第二列是调制方式,实际上计算带进去的值是调制的阶数(故需要将调制方式转换为阶数)。第三列是对应的编码速率,这里又称为FEC速率(FEC是前向纠错码的名称,ForwardErrorCorrection)。在802.11a中是采用卷积码的形式进行编码的,然后在译码的时候采用的是viterbi算法。FEC速率可以简单理解成冗余度,即1/2可以理解成1个bit用2个bit来重复发送。最后一列对应的就是实际的物理层速率了。然后我们关注的是物理层的速率计算,通常我们简单理解物理层的速率计算等于子载波数*调制阶数*编码效率/发送间隔。举个例子:对应调制方式为16QAM,编码效率为1/2的速率。同时我们还需要补充的条件是:802.11a中,数据子载波是48个,OFDMsymbol的时间是4us(简单理解成每次传输的时间间隔),16QAM每次可以传输的物理层比特数为4(即2的4次方为16)。即24Mbps=48*4*(1/2)/4us。每一种速率通过不同的编码方式,从而达到不同的实际速率。PS:如果在802.11n/ac中还存在不同的带宽模式,对应不同带宽对应不同的子载波数,这里由于是802.11a所以子载波数固定。
⑵ 家里wifi信号太差怎么办
若是使用的vivo手机,可以参考以下竖败连接WiFi信号弱排查方法:
1、排查手机保护壳
如果手机使用了金属、磁吸类保护壳或支架,此类保护壳和支架对WiFi信号有影响,建议取下后尝试。
2、排查环境原因
WiFi 信号强弱跟使用环境有关(如墙壁、距离过远等),如果信号橡做弱/上网慢,建议可调整手机与WiFi路由器间的距离后再尝试。
3、可能是路由器的原因,请尝试连接其他WiFi对比;
4、重置网络设置
备份好数据,进入设置--系统管理--备份与重置--重置网络设置--重置设置,再使用查看。
*注:重置网络设置会清余如颤除WLAN、移动数据网络、蓝牙等连接记录;双卡时需选择对应的SIM卡。
⑶ 在无线传感器网络中,如何根据接收信号的强度来判断发送者的距离有具体的计算公式么
基于RSSI的定位
RSSI测量,一般利用信号传播的经验模型与理论模型。
对于经验模型,在实际定位前,先选取若干测试点,记录在这些点各基站收到的信号强度,建立各个点上的位置和信号强度关系的离线数据库(x,y,ss1,ss2,ss3)。在实际定位时,根据测得的信号强度(ss1′,ss2′,ss3′)和数据库中记录的信号强度进行比较,信号强度均方差最小的那个点的坐标作为节点的坐标。
对于理论模型,常采用无线电传播路径损耗模型进行分析。常用的传播路径损耗模型有:自由空间传播模型、对数距离路径损耗模型、哈它模型、对数一常态分布模型等。自由空间无线电传播路径损耗模型为:
式中,d为距信源的距离,单位为km;f为频率,单位为MHz;k为路径衰减因子。其他的模型模拟现实环境,但与现实环境还是有一定的差距。比如对数一常态分布模型,其路径损耗的计算公式为:
式中,Xσ是平均值为O的高斯分布随机变数,其标准差范围为4~10;k的范围在2~5之间。取d=1,代入式(1)可得,LOSS,即PL(d0)的值。此时各未知节点接收锚节点信号时的信号强度为:
RSSI=发射功率+天线增益一路径损耗(PL(d))
2.2 基于RSSI的三角形质心定位算法的数学模型
不论哪种模型,计算出的接收信号强度总与实际情况下有误差,因为实际环境的复杂性,换算出的锚节点到未知节点的距离d总是大于实际两节点间的距离。如图1所示,锚节点A,B,C,未知节点D,根据RSSI模型计算出的节点A和D的距离为rA;节点B和D的距离为rB;节点C和D的距离为rC。分别以A,B,C为圆心;rA,rB,rC为半径画圆,可得交叠区域。这里的三角形质心定位算法的基本思想是:计算三圆交叠区域的3个特征点的坐标,以这三个点为三角形的顶点,未知点即为三角形质心,如图2所示,特征点为E,F,G,特征点E点的计算方法为:
同理,可计算出F,G,此时未知点的坐标为由仿真得,在图2中,实际点为D;三角形质心算法出的估计点为M;三边测量法算出的估计点为N。可知,三角形质心算法的准确度更高。
3 基于RSSI的三角形质心算法过程
3.1 步骤
(1)锚节点周期性向周围广播信息,信息中包括自身节点ID及坐标。普通节点收到该信息后,对同一锚节点的RSSI取均值。
(2)当普通节点收集到一定数量的锚节点信息时,不再接收新信息。普通节点根据RSSI从强到弱对锚节点排序,并建立RSSI值与节点到锚节点距离的映射。建立3个集合。
锚节点集合:
(3)选取RSSI值大的前几个锚节点进行自身定位计算。
在B_set:中优先选择RSSI值大的信标节点组合成下面的锚节点集合,这是提高定位精度的关键。
对锚节点集合,依次根据(3)式算出3个交点的坐标,最后由质心算法,得出未知节点坐标。
(4)对求出的未知节点坐标集合取平均,得未知节点坐标。
3.2 误差定义
定义定位误差为ER,假设得到的未知节点的坐标为(xm,ym),其真实位置为(x,y),则定位误差ER为:
4 仿 真
利用Matlab仿真工具模拟三角形质心算法,考察该算法的性能。假设在100 m×100 m的正方形区域内,36个锚节点均匀分布,未知节点70个,分别用三边测量法和三角形质心定位算法进行仿真,仿真结果如图3所示。由图3可知,三角形质心算法比三边测量法,定位精度更高,当测距误差变大时,用三角形质心算法得出的平均定位误差比用三边测量法得出的小得多。
5 结 语
在此提出了将RSSI方法和三角形质心定位算法相结合的方法,通过仿真实验,将该算法和三边测量算法相比较,证明了该算法的优越性。下一步将研究在锚节点数量不同时的平均定位误差。
⑷ 为什么校园网信号总是不稳定呢
1.同时在线的人数过多
2.信号受到墙体等障碍物影响
3.登录设备的配置高低以及操作系统的优劣
一、校园网是宽带多媒体网络,它是由一个信号节点形成的多个局域网络,通过有线或者无线的方式连接起来的局域网。
由于校园师生人数众多,每个时间段连接校园网的设备都不一样,而基站节点在一个范围内只存在一个,这对基站节点的压力是巨大的,所以当登录设备较少时,校园网的网速会变快,反之则变慢。
二、WiFi信号是会受距离、沿线障碍物的影响,距离信号发射端越近,信号越好,以及墙体等障碍物,墙体越厚,信号越差。
由于校园面积大,且建筑高低不同,人在移动的过程中,受距离的影响以及障碍物的变化,将导致WiFi信号的时好时慢
三、登录设备的差异,会造成信号的不稳定,性能差的手机或者电脑,接收信号的效果也会较差。
⑸ aimesh不自动切换信号
网络拓扑结构不合理、节点间的信号强度不足。
1、网络拓扑结构不合理:aimesh节点之间距离过远,或者节点之间存在阻碍物(如墙壁),则会导致节点信号弱,无法自动切换。可以将节点放置在离主节点较近的地方,并尽量避免障碍物。
2、节点间的信号强度不足:当节点之间的信号强度较弱时,系统无法自动切换到更好的节点。