1、所谓无线网络,就是利用无线电波作为信息传输的媒介构成的无线局域网(WLAN),与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线,可以和有线网络互为备份。
2、常见标准有以下三种:
IEEE 802.11a :使用5GHz频段,传输速度54Mbps,与802.11b不兼容
IEEE 802.11b :使用2.4GHz频段,传输速度11Mbps
IEEE 802.11g :使用2.4GHz频段,传输速度54Mbps,可向下兼容802.11b
目前IEEE 802.11b最常用,但IEEE 802.11g更具下一代标准的实力
3、光有无线网卡无法连接无线网络,还必须有无线AP,相当于有线网络的集线器.只有在无线AP可以覆盖的区域内,进行适当的设置,才能连接无线网络.
无线上网是靠无线网卡,当然,配套的还需无线路由(无线猫)。
无线网卡相当于是接收器,无线路由(无线猫)相当于发射器。其实还是需要有线的Internet线路接入到无线猫上,再将信号转化为无线的信号发射出去,由无线网卡接收。
一般无线路由可以拖2~4个无闷大薯线网卡,工作距离在50米以内效果较好,远了通信质量很差。这种无线方案严格的说,只是无线布网,工作环境必须紧挨着有线网络。
一套的售价在300~800不等。
另外一种就是纯粹的无线了,这就需要通信器材,比如卫星接收器,或可以上网的手机等等,这些东西通过专用的数据线接入电脑,由他们接收来自卫星或无线网络服务的信号,但是速度不怎么样,通信费用超贵。并且卫星接收器和手机的价格也不菲,通常在3000~5000不等,优点就是,即使你在荒山野岭也能上网(当然要有电脑)
这两种方案都可以用在笔记本和台式机上,当然,台式机本来移动就不方便,无线就没什么太大的意义了。
无线网卡的作用类似于以太网中的网卡,作为无线网络的接口,实现与无线网络的连接仿冲.无线网卡根据接口类型的不同,主要分为三种类型,即PCMCIA无线网卡,PCI无线网卡和USB无线网卡.
PCMCIA无线网卡仅适用于笔记本电脑,支持热插拔,可以非常方便地实现移动式无线接入.
PCI接口无线网卡适用于普通的台式计算机使用.其实PCI接口的无线网卡只是在PCI转接卡上插入一块普通的PC卡.
USB接口无线网卡适用于笔记本蚂者电脑和台式机,支持热插拨.不过,由于USB网卡对笔记本而言是个累赘,因此,USB网卡通常被用于台式机.
② WIFI和无线网络有什么区别
1、Wi-FiWirelessFidelity,无线保真技术与蓝牙技术一样,同属于在办公室和家庭中使用的短距离无线技术。该技术使用的使2.4GHz附近的频段,该频段目前尚属没用许可的无线频段。其目前可使用的标准有两个,分别是IEEE802.11a和IEEE802.11b。该技术由于有着自身的优点,因此受到厂商的青睐。WI-FI是少数几家美国信息企业把持的带有强烈利益杠杆和教鞭色彩的“非营利组织”,他们制定了自己的WIFI标准WEP、WPA。
2、AP(AP,Access Point,无线访问节点、会话点或存取桥接器)是一个包含很广的名称,它不仅包含单纯性无线接入点(无线AP),也同样是无线路由器(含无线网关、无线网桥)等类设备的统称,其功能有点像家里的无线路由器。单纯性无线AP就是一个无线的交换机,仅仅是提供一个无线信号发射的功能。单纯性无线AP的工作原理是将网络信号通过双绞线传送过来,经过AP产品的编译,将电信号转换成为无线电讯号发送出来,形成无线网的覆盖。根据不同的功率,其可以实现不同程度、不同范围的网络覆盖,一般无线AP的最大覆盖距离可达300米
③ 无线网络技术和移动通信技术有什么不同,有哪些相同。
其实这两种差不多,以下做分别介绍:
(一)、无线网络技术
1、所谓的无线网络,既包括允许用户建立远距离无线连接的全球语音和数据网络,也包括为近距离无线连接进行优化的红外线技术及射频技术,与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线,可以和有线网络互为备份。
2、采用无线传输媒体如无线电波、红外线等的网络。与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线。
3、无线网络技术涵盖的范围很广,既包括允许用户建立远距离无线连接的全球语音和数据网络,也包括为近距离无线连接进行优化的红外线技术及射频技术。通常用于无线网络的设备包括便携式计算机、台式计算机、手持计算机、个人数字助理(PDA)、移动电话、笔式计算机和寻呼机。无线技术用于多种实际用途。例如,手机用户可以使用移动电话查看电子邮件。
4、使用便携式计算机的旅客可以通过安装在机场、火车站和其他公共场所的基站连接到Internet。在家中,用户可以连接桌面设备来同步数据和发送文件目前主流应用的无线网络分为GPRS手机无线网络上网和无线局域网两种方式。
5、而GPRS手机上网方式,是一种借助移动电话网络接入Internet的无线上网方式,因此只要所在城市开通了GPRS上网业务,在任何一个角落都可以通过笔记本电脑来上网。
6、无线网络并不是何等神秘之物,可以说是相对于目前普遍使用的有线网络而言的一种全新的网络组建方式。无线网络在一定程度上扔掉了有线网络必须依赖的网线。
(二)、移动通信技术
第一代
第一代 移动通信系统(1G)是在20世纪80年代初提出的,它完成于20世纪90年代初,如NMT和AMPS,NMT于1981年投入运营。第一代移动通信系统是基于模拟传输的,其特点是业务量小、质量差、安全性差、没有加密和速度低。1G主要基于蜂窝结构组网,直接使用模拟语音调制技术,传输速率约2.4kbit/s。不同国家采用不同的工作系统。
第二代
第二代移动通信系统(2G)起源于90年代初期。欧洲电信标准协会在1996年提出了GSM Phase 2+,目的在于扩展和改进GSM Phase 1及Phase 2中原定的业务和性能。它主要包括CMAEL(客户化应用移动网络增强逻辑),S0(支持最佳路由)、立即计费,GSM 900/1800双频段工作等内容,也包含了与全速率完全兼容的增强型话音编解码技术,使得话音质量得到了质的改进;半速率编解码器可使GSM系统的容量提近一倍。在GSM Phase2+阶段中,采用更密集的频率复用、多复用、多重复用结构技术,引入智能天线技术、双频段等技术,有效地克服了随着业务量剧增所引发的GSM系统容量不足的缺陷;自适应语音编码(AMR)技术的应用,极大提高了系统通话质量;GPRs/EDGE技术的引入,使GSM与计算机通信/Internet有机相结合,数据传送速率可达115/384kbit/s,从而使GSM功能得到不断增强,初步具备了支持多媒体业务的能力。尽管2G技术在发展中不断得到完善,但随着用户规模和网络规模的不断扩大,频率资源己接近枯竭,语音质量不能达到用户满意的标准,数据通信速率太低,无法在真正意义上满足移动多媒体业务的需求。
第三代
3G技术
第三代移动通信系统(3G),也称IMT 2000,是正在全力开发的系统,其最基本的特征是智能信号处理技术,智能信号处理单元将成为基本功能模块,支持话音和多媒体数据通信,它可以提供前两代产品不能提供的各种宽带信息业务,例如高速数据、慢速图像与电视图像等。如WCDMA的传输速率在用户静止时最大为2Mbps,在用户高速移动是最大支持144Kbps,说占频带宽度5MHz左右。但是,第三代移动通信系统的通信标准共有WCDMA,CDMA2000和TD-SCDMA三大分支,共同组成一个IMT 2000家庭,成员间存在相互兼容的问题,因此已有的移动通信系统不是真正意义上的个人通信和全球通信;再者,3G的频谱利用率还比较低,不能充分地利用宝贵的频谱资源;第三,3G支持的速率还不够高,如单载波只支持最大2~fDps的业务,等等。这些不足点远远不能适应未来移动通信发展的需要,因此寻求一种既能解决现有问题,又能适应未来移动通信的需求的新技术(即新一代移动通信:next generation mobile communication)是必要的。
高速铁路移动通信和3G技术
一般来说,在高速移动的物体上,当速度超过时速150千米时,2G/3G的快速功率控制效果不佳,此时就要看哪种通信制式的抗衰落手段多,且衰落储备量大。TD-SCDMA对高速移动情况不太适应,主要是因为技术性能先进的只能天线没有在高铁上全面普及和覆盖,且系统的增益又不高,再加上使用终端的功率不大,使得在高铁上,对于覆盖边缘由于衰落储备不足而掉话;到目前为止,GSM制式在高铁系统中还没有启用功控装置,不过GSM制式只提供语音通话,信道编码纠错技术在这种情况下的作用显着,在通信基站功率达到40W,终端功率达到2W,且基站距离较短的情况下,衰落储备量发挥作用,高铁的应用效果还可以。GSM系统中的EDGE制式在高铁中的效果不好,主要是由于EDGE在高速数据时的编码效率为1,没有编码冗余度,对应的信道编码增益相对较低,此外,高阶的数据8PSK调制,会使得解调EDGE数据的信噪比较高,导致EDGE边缘的覆盖电压需要更高,其衰落储备要更大;但在实际的高铁系统中,两个基站覆盖区之间的衰落储备一般都不足,使得传输的数据率会迅速下降。所以,就要寻求新的技术体系来解决高铁中的移动通信问题。 3G通信技术在我国的发展是日新月异。2009年1月7日,我国同时发放了三张3G牌照,即:TD-SCDMA、WCDMA、CDMA200,标志着我国正式进入了3G时代。3G网络运行的两年多时间里,在拉动我国GDP增长的同时,还为国内创造了大量的就业机会。从技术角度来分析,3G移动通信网络相对于2G网络的优势在于更大的系统容量和更好的通信质量,且能够实现全球范围的无缝漫游,为通信用户提供包括语音、数据和多媒体等多种形式的通信服务。 在国际移动通信领域,国际电联对3G网络有其最低的要求和标准,即:在高速移动的地面物体上,3G网络所能提供的数据业务为64~144kb/s,要能够适应500km/h的移动环境。针对该标准,我国现行的3种3G网络中,WCDMA和CDMA2000主要采用“软切换”技术,能够实现移动终端在时速500km时的正常通信,即能够实现在与另一个新基站通信时,首先不中断跟原基站的联系,而是在跟新的基站连接好后,再中断跟原基站的连接,这也是3G网络优于2G网络的一个突出特点;WCDMA技术已经解决了高速运动物体的无缝覆盖问题;此外,TD-SCDMA也对高铁通信的覆盖方案进行了研究。 因此,3G移动通信网络在技术层面上已经具有为高铁提供通信保障的基本条件,为我国高铁发展过程中移动通信问题的完满解决奠定了坚实基础。
第四代
4G是第四代移动通信及其技术的简称,是集3G与WLAN于一体并能够传输高质量视频图像以及图像传输质量与高清晰度电视不相上下的技术产品。 4G系统能够以100Mbps的速度下载,比拨号上网快2000倍,上传的速度也能达到20Mbps,并能够满足几乎所有用户对于无线服务的要求。而在用户最为关注的价格方面,4G与固定宽带网络在价格方面不相上下,而且计费方式更加灵活机动,用户完全可以根据自身的需求确定所需的服务。此外,4G可以在DSL和有线电视调制解调器没有覆盖的地方部署,然后再扩展到整个地区。 很明显,4G有着不可比拟的优越性。
4G移动系统网络结构可分为三层:物理网络层、中间环境层、应用网络层。物理网络层提供接入和路由选择功能,它们由无线和核心网的结合格式完成。中间环境层的功能有QoS映射、地址变换和完全性管理等。物理网络层与中间环境层及其应用环境之间的接口是开放的,它使发展和提供新的应用及服务变得更为容易,提供无缝高数据率的无线服务,并运行于多个频带。这一服务能自适应多个无线标准及多模终端能力,跨越多个运营者和服务,提供大范围服务。第四代移动通信系统的关键技术包括信道传输;抗干扰性强的高速接入技术、调制和信息传输技术;高性能、小型化和低成本的自适应阵列智能天线;大容量、低成本的无线接口和光接口;系统管理资源;软件无线电、网络结构协议等。第四代移动通信系统主要是以正交频分复用(OFDM)为技术核心。OFDM技术的特点是网络结构高度可扩展,具有良好的抗噪声性能和抗多信道干扰能力,可以提供无线数据技术质量更高(速率高、时延小)的服务和更好的性能价格比,能为4G无线网提供更好的方案。例如无线区域环路(WLL)、数字音讯广播(DAB)等,预计都采用OFDM技术。4G移动通信对加速增长的广带无线连接的要求提供技术上的回应,对跨越公众的和专用的、室内和室外的多种无线系统和网络保证提供无缝的服务。通过对最适合的可用网络提供用户所需求的最佳服务,能应付基于因特网通信所期望的增长,增添新的频段,使频谱资源大扩展,提供不同类型的通信接口,运用路由技术为主的网络架构,以傅利叶变换来发展硬件架构实现第四代网络架构。移动通信会向数据化,高速化、宽带化、频段更高化方向发展,移动数据、移动IP预计会成为未来移动网的主流业务。