導航:首頁 > 網路連接 > 計算機網路協議都是分層嗎

計算機網路協議都是分層嗎

發布時間:2022-12-06 14:49:34

⑴ TCP/IP參考模型將計算機網路協議劃分為4層,以下不屬於這4層的是

TCP/IP參考模型將計算機網路協議劃分為4層,以下不屬於這4層的是物理層。基於TCP/IP的參考模型將協議分成四個層次,它們分別是:網路訪問層、網際互聯層(主機到主機)、傳輸層、和應用層。

網路訪問層是以IP為代表的網路協議, 這是真正的互聯網通信,兩台電腦之間可能鏈路層傳出的數據協議不一樣,但是都轉換成統一的IP數據協議,通過網線進行通信。

鏈路層主要包括設備驅動程序,網卡,以及區域網,將操作系統上的數據以位流形式封裝成幀,往上發送,也將來自上一層的數據幀,拆裝為位流形式的數據轉發到電腦操作系統中。

運輸層是以TCP,UDP協議為主,因為IP協議發送的數據可靠性不高,並且是最多精確到電腦,TCP協議採用超時重傳、發送和接收端到端的確認分組等機制確保數據傳輸的可靠度,並且可以精確到進程,將數據傳遞給進程。

應用層對應於OSI參考模型的高層,為用戶提供所需要的各種服務,例如:FTP、Telnet、DNS、SMTP等。

(1)計算機網路協議都是分層嗎擴展閱讀:

在TCP/TP協族中,網路層IP提供的是一種不可靠的服務。它只是盡可能快地把分組從源節點送到目的節點,但不提供任何可靠性的保證。Tcp在不可靠的ip層上,提供了一個可靠的運輸層,為了提供這種可靠的服務,TCP採用了超時重傳、發送和接收端到端的確認分組等機制。

在7層模型中,每一層都提供一個特殊的網路功能。從網路功能的角度觀察:下面4層(物理層、數據鏈路層、網路層和傳輸層)主要提供數據傳輸和交換功能,即以節點到節點之間的通信為主;第4層作為上下兩部分的橋梁,是整個網路體系結構中最關鍵的部分;

而上3層(會話層、表示層和應用層)則以提供用戶與應用程序之間的信息和數據處理功能為主。簡言之,下4層主要完成通信子網的功能,上3層主要完成資源子網的功能。

⑵ 計網5:分層結構、協議、介面、服務

發送文件前要完成的工作:
1.發起通信的計算機必須將數據通信的通路進行激活。
2.要告訴網路如何識別目的主機。
3.發起通信的計算機要查明目的主機是否開機,並且與網路連接正常。
4.發起通信的計算機要弄清楚,對方計算機中文件管理程序是否已經做好准備工作。(如是否有足夠的空間存儲)
5.確保差錯和意外可以解決。
6.其他。。

因為問題非常多,因此考慮將大問題分解成小問題,所以分層。

1.各層之間相互獨立,每層只實現一種相對獨立的功能。
2.每層之間界面自然清晰,易於理解,相互交流盡可能少。
3.結構上可分割開。每層都採用最合適的技術來實現。
4.保持下層對上層的獨立性,上層單向使用下層提供的服務。
5.整個分層結構應該能促進標准化工作。

1.實體:第n層中的活動元素稱為n層實體。同一層的實體叫對等實體。
2.協議:為進行網路中的對等實體數據交換而建立的規則、標准或約定稱為網路協議。(協議是水平的,因為是對等層次之間使用的)
協議三大要素:
語法:規定傳輸數據的格式(例如數據如何分割)
語義:規定所要完成的功能
同步:規定各種操作的順序(例如數據報發送順序)
3.介面(訪問服務點SAP):上層使用下層服務的入口。
4.服務:下層為相鄰上層提供的功能調用。(垂直)

SDU服務數據單元:為完成用戶所要求的功能而應傳送的數據。
PCI協議控制信息:控制協議操作的信息。
PDU協議數據單元:對等層次之間傳送的數據單位。

PCI+SDU=PDU
圖示(上層的PDU作為下層的SDU):

1.網路體系結構是從功能上描述計算機結構。
2.計算機網路體系結構簡稱網路體系結構,是分層結構。
3.每層遵循某個/些網路協議以完成本層功能。
4.計算機網路體系結構是計算機網路的各層及其協議的集合。
5.第n層在向n+1層提供服務時,此服務不僅包含第n層本身的功能,還包含由下層服務提供的功能。
6.僅僅在相鄰層間有介面,且所提供服務的具體實現細節對上一層完全屏蔽。
7.體系結構是抽象的,而實現是指能運行的一些軟體和硬體。

⑶ 計算機網路的協議分層

為了減少網路設計的復雜性,絕大多數網路採用分層設計方法。所謂分層設計方法,就是按照信息的流動過程將網路的整體功能分解為一個個的功能層,不同機器上的同等功能層之間採用相同的協議,同一機器上的相鄰功能層之間通過介面進行信息傳遞。為了便於理解介面和協議的概念,我們首先以郵政通信系統為例進行說明。人們平常寫信時,都有個約定,這就是信件的格式和內容。首先,我們寫信時必須採用雙方都懂的語言文字和文體,開頭是對方稱謂,最後是落款等。這樣,對方收到信後,才可以看懂信中的內容,知道是誰寫的,什麼時候寫的等。當然還可以有其他的一些特殊約定,如書信的編號、間諜的密寫等。信寫好之後,必須將信封裝並交由郵局寄發,這樣寄信人和郵局之間也要有約定,這就是規定信封寫法並貼郵票。在中國寄信必須先寫收信人地址、姓名,然後才寫寄信人的地址和姓名。郵局收到信後,首先進行信件的分揀和分類,然後交付有關運輸部門進行運輸,如航空信交民航,平信交鐵路或公路運輸部門等。這時,郵局和運輸部門也有約定,如到站地點、時間、包裹形式等等。信件運送到目的地後進行相反的過程,最終將信件送到收信人手中,收信人依照約定的格式才能讀懂信件。如圖所示,在整個過程中,主要涉及到了三個子系統、即用戶子系統,郵政子系統和運輸子系統。各種約定都是為了達到將信件從一個源點送到某一個目的點這個目標而設計的,這就是說,它們是因信息的流動而產生的。可以將這些約定分為同等機構間的約定,如用戶之間的約定、郵政局之間的約定和運輸部門之間的約定,以及不同機構間的約定,如用戶與郵政局之間的約定、郵政局與運輸部門之間的約定。雖然兩個用戶、兩個郵政局、兩個運輸部門分處甲、乙兩地,但它們都分別對應同等機構,同屬一個子系統;而同處一地的不同機構則不在一個子系統內,而且它們之間的關系是服務與被服務的關系。很顯然,這兩種約定是不同的,前者為部門內部的約定,而後者是不同部門之間的約定。 在計算機網路環境中,兩台計算機中兩個進程之間進行通信的過程與郵政通信的過程十分相似。用戶進程對應於用戶,計算機中進行通信的進程(也可以是專門的通信處理機〕對應於郵局,通信設施對應於運輸部門。為了減少計算機網路設計的復雜性,人們往往按功能將計算機網路劃分為多個不同的功能層。網路中同等層之間的通信規則就是該層使用的協議,如有關第N層的通信規則的集合,就是第N層的協議。而同一計算機的不同功能層之間的通信規則稱為介面( i n t e r f a c e),在第N層和第(N+ 1)層之間的介面稱為N /(N+ 1)層介面。總的來說,協議是不同機器同等層之間的通信約定,而介面是同一機器相鄰層之間的通信約定。不同的網路,分層數量、各層的名稱和功能以及協議都各不相同。然而,在所有的網路中,每一層的目的都是向它的上一層提供一定的服務。協議層次化不同於程序設計中模塊化的概念。在程序設計中,各模塊可以相互獨立,任意拼裝或者並行,而層次則一定有上下之分,它是依數據流的流動而產生的。組成不同計算機同等層的實體稱為對等進程( peer process)。對等進程不一定非是相同的程序,但其功能必須完全一致,且採用相同的協議。分層設計方法將整個網路通信功能劃分為垂直的層次集合後,在通信過程中下層將向上層隱蔽下層的實現細節。但層次的劃分應首先確定層次的集合及每層應完成的任務。劃分時應按邏輯組合功能,並具有足夠的層次,以使每層小到易於處理。同時層次也不能太多,以免產生難以負擔的處理開銷。計算機網路體系結構是網路中分層模型以及各層功能的精確定義。對網路體系結構的描述必須包括足夠的信息,使實現者可以為每一功能層進行硬體設計或編寫程序,並使之符合相關協議。但我們要注意的是,網路協議實現的細節不屬於網路體系結構的內容,因為它們隱含在機器內部,對外部說來是不可見的。現在我們來考查一個具體的例子:在圖1 - 11所示的5層網路中如何向其最上層提供通信。在第5層運行的某應用進程產生了消息M,並把它交給第4層進行發送。第4層在消息M前加上一個信息頭(h e a d e r),信息頭主要包括控制信息(如序號)以便目標機器上的第4層在低層不能保持消息順序時,把亂序的消息按原序裝配好。在有些層中,信息頭還包括長度、時間和其他控制欄位。在很多網路中,第4層對接收的消息長度沒有限制,但在第3層通常存在一個限度。因此,第3層必須將接收的入境消息分成較小的單元如報文分組( p a c k e t),並在每個報文分組前加上一個報頭。在本實例中,消息M被分成兩部分:M 1和M 2。第3層確定使用哪一條輸出線路,並將報文傳給第2層。第2層不僅給每段消息加上頭部信息,而且還要加上尾部信息,構成新的數據單元,通常稱為幀( f r a m e),然後將其傳給第1層進行物理傳輸。在接收方,報文每向上遞交一層,該層的報頭就被剝掉,決不可能出現帶有N層以下報頭的報文交給接收方第N層實體的情況。要理解圖1 - 11示意圖,關鍵要理解虛擬通信與物理通信之間的關系,以及協議與介面之間的區別。比如,第4層的對等進程,在概念上認為它們的通信是水平方向地應用第四層協議。每一方都好像有一個叫做「發送到另一方去」的過程和一個叫做「從另一方接收」的過程,盡管實際上這些過程是跨過3 / 4層介面與下層通信而不是直接同另一方通信。抽象出對等進程這一概念,對網路設計是至關重要的。有了這種抽象技術,網路設計者就可以把設計完整的網路這種難以處理的大問題,劃分成設計幾個較小的且易於處理的問題,即分別設計各層。

⑷ 計算機網路的分層結構

物理層:為數據鏈路層對等實體之間的信息交換建立物理連接,在物理連接上正確、透明地傳送物理層數據單元(物理層的數據單元是比特流)。物理層提供激活、維持、去活物理連接的所需機械特性、電氣特性、功能特性、規程特性的手段。

鏈路層:該層相鄰結點的一個或多個物理連接上為網路層建立、維持、釋放鏈路連接,並在鏈路連接上可靠地、正確地傳送鏈路層協議數據單元(通常稱為幀)。糾錯和流量控制是鏈路層的兩個主要功能。

網路層:提供網路層對等實體建立、維持、終止網路連接的手段,並在網路連接上交換網路層協議數據單元,即分組。其中,一個重要功能是網路選路和定址。

傳輸層:基本功能是為會話層提供可靠地、經濟的傳輸連接的手段,並在傳輸連接上交換傳輸層協議數據單元—報文。傳輸層是端到端,在通信子網中無傳輸層。流量控制(Flow control)是傳輸層的一個重要功能。

會話層:為會話連接提供手段,並利用會話連接組織和同步應用進程之間的會話。

表示層:該層主要解決用戶數據的語法表示問題。它將要交換數據的抽象語法(適合於某一用戶)轉換為傳送語法(適合於 OSI 內部使用)——公共表示方法。

應用層:為用戶應用進程訪問 OSI 提供介面,並負責信息的語義表示。

⑸ 網路協議分別是哪七層協議

根據建議X.200,OSI將計算機網路體系結構劃分為以下七層,標有1~7,第1層在底部。 現「OSI/RM」是英文「Open Systems Interconnection Reference Model」的縮寫。

其中高層(即7、6、5、4層)定義了應用程序的功能,下面3層(即3、2、1層)主要面向通過網路的端到端的數據流。

⑹ 網路協議分層(七層、四層)

一、概述

      網路協議設計者不應當設計一個單一、巨大的協議來為所有形式的通信規定完整的細節,而應把通信問題劃分成多個小問題,然後為每一個小問題設計一個單獨的協議。這樣做使得每個協議的設計、分析、時限和測試比較容易。協議劃分的一個主要原則是確保目標系統有效且效率高。為了提高效率,每個協議只應該注意沒有被其他協議處理過的那部分通信問題;為了主協議的實現更加有效,協議之間應該能夠共享特定的數據結構;同時這些協議的組合應該能處理所有可能的硬體錯誤以及其它異常情況。為了保證這些協議工作的協同性,應當將協議設計和開發成完整的、協作的協議系列(即協議族),而不是孤立地開發每個協議。
    所以在網路歷史的早期,國際標准化組織(ISO)和國際電報電話咨詢委員會(CCITT)共同出版了開放系統互聯的七層參考模型。一台計算機操作系統中的網路過程包括從應用請求(在協議棧的頂部)到網路介質(底部) ,OSI參考模型把功能分成七個分立的層次。

二、OSI網路分層模型

如圖所示:

OSI模型的七層分別進行以下的操作:
第一層:物理層(physical)(單位類型:比特):實現比特流的透明傳輸,物理介面,具有電氣特性

第二層:數據鏈路層(date link)(單位類型:幀):訪問介質;數據在該層封裝成幀;用MAC地址作為訪問媒介;具有錯誤檢測與修正功能。MAC描述在共享介質環境中如何進行站的調度、發生和接收數據。MAC確保信息跨鏈路的可靠傳輸,對數據傳輸進行同步,識別錯誤和控制數據的流向。一般地講,MAC只在共享介質環境中才是重要的,只有在共享介質環境中多個節點才能連接到同一傳輸介質上

第三層:網路層(network)(單位類型:報文):數據傳輸;提供邏輯地址,選擇路由數據包,負責在源和終點之間建立連接

第四層:傳輸層(transport):實現端到端傳輸;分可靠與不可靠傳輸;在傳輸前實現錯誤檢測與流量控制,定義埠號(標記相應的服務)

第五層:會話層(session):主機間通信;對應用會話管理,同步

第六層:表示層(presention):數據表現形式;特定功能的實現-比如加密模式確保原始設備上加密的數據可以在目標設備上正確地解密

第七層:應用層(application):最接近終端用戶的OSI層,這就意味著OSI應用層與用戶之間是通過應用軟體直接相互作用的。網路進程訪問應用層;提供介面服務

OSI的應用層協議包括文件的傳輸、訪問及管理協議(FTAM) ,以及文件虛擬終端協議(VIP)和公用管理系統信息(CMIP)等。

二、TCP/IP分層模型

TCP/IP分層模型(TCP/IP Layening Model)被稱作網際網路分層模型(Internet Layering Model)、網際網路參考模型(Internet Reference Model)。


 TCP/IP協議被組織成四個概念層,其中有三層對應於OSI參考模型中的相應層。TCP/IP協議族並不包含物理層和數據鏈路層,因此它不能獨立完成整個計算機網路系統的功能,必須與許多其他的協議協同工作。
TCP/IP分層模型的四個協議層分別完成以下的功能:
第四層:應用層:TCP/IP協議的 應用層 相當於OSI模型的 會話層、表示層和應用層 ,FTP(文件傳輸協議),DNS(域名系統),HTTP協議,Telnet(網路遠程訪問協議)

第三層:傳輸層:提供TCP(傳輸控制協議),UDP(用戶數據報協議)兩個協議,主要功能是數據格式化、數據確認和丟失重傳等。

第二層:網路層:該層負責相同或不同網路中計算機之間的通信主要處理數據包和路由。數據包是網路傳輸的最小數據單位。通過某條傳輸路線將數據包傳給對方。IP協議,ICMP協議,IGMP協議。在IP層中,ARP協議用於將IP地址轉換成物理地址,ICMP協議用於報告差錯和傳送控制信息。IP協議在TCP/IP協議組中處於核心地位。

第一層:網路介面層:TCP/IP協議的最低一層,對實際的網路媒體的管理,包括操作系統中的設備驅動程序和計算機對應的網路介面卡


OSI與TCP/IP的對比:

分層結構:OSI參考模型與TCP/IP協議都採用了分層結構,都是基於獨立的協議棧的概念。OSI參考模型有7層,而TCP/IP協議只有4層,即TCP/IP協議沒有了表示層和會話層,並且把數據鏈路層和物理層合並為網路介面層。不過,二者的分層之間有一定的對應關系。

連接服務:OSI的網路層基本與TCP/IP的網路層對應,二者的功能基本相似,但是定址方式有較大的區別。

OSI的地址空間為不固定的可變長,由選定的地址命名方式決定,最長可達160位元組,可以容納非常大的網路,因而具有較大的成長空間。根據OSI的規定,網路上每個系統至多可以有256個通信地址。TCP/IP網路的地址空間為固定的4位元組(在目前常用的IPV4中是這樣,在IPV6中將擴展到16位元組)。網路上的每個系統至少有一個唯一的地址與之對應。

 以上就是我對七個分層和四個分層的粗鄙理解,歡迎大家的指導!

⑺ 網路 分層

很多人都把TCP/IP理解為TCP和IP,其實不是。TCP/IP其實是一個協議族群包括了TCP協議,UDP協議,IP協議,DHCP協議(動態IP),SSH(遠程登錄協議),HTTP協議(超文本傳輸協議),PPP協議(點對點通信協議)。

TCP/IP 模型也是分層模型,分為4 層。OSI/RM 模型與TCP/IP 模型的參考層次如圖所示:

當用戶通過http發起一個請求時,應用層,傳輸層,網路層,鏈路層的相關協議依次對該請求進行包裝並協帶對應的首部,最終在鏈路層生成乙太網數據包,數據包通過物理介質傳輸給對方主機,對方接收到數據包後,再一層一層地採用對應的協議進行拆包,最後把應用層數據交給應用程序去處理。

傳輸控制協議(Transmission Control Protocol,TCP)是一種面向連接的、可靠的、基於位元組流的傳輸層通信協議。流就是指不間斷的數據結構,當應用程序採用 TCP 發送消息時,雖然可以保證發送的順序,但還是猶如沒有任何間隔的數據流發送給接收端。TCP 為提供可靠性傳輸,可以進行丟包時的重發控制,還可以對次序亂掉的分包進行順序控制的機制。此外,因為TCP 作為一種面向有連接的協議,只有在確認通信對端存在時才會發送數據,從而還具備「流量控制」、「擁塞控制」、提高網路利用率等眾多功能。著名的三次握手就是指建立一個 TCP 連接時需要客戶端和伺服器端總共發送三個包以確認連接的建立,而終止TCP連接就是四次揮手,需要客戶端和服務端總共發送四個包以確認連接的斷開。

用戶數據報協議(User Datagram Protocol ,UDP)是TCP/IP 模型中一種面向無連接的傳輸層協議,提供面向事務的簡單不可靠信息傳送服務。UDP 協議基本上是IP 協議與上層協議的介面。UDP 協議適用於埠分別運行在同一台設備上的多個應用程序中。與TCP 不同,UDP 並不提供對IP 協議的可靠機制、流控制以及錯誤恢復功能等,在數據傳輸之前不需要建立連接。由於UDP 比較簡單,UDP 頭包含很少的位元組,所以比TCP負載消耗少。UDP 適用於不需要TCP 可靠機制的情形,比如,當高層協議或應用程序提供錯誤和流控制功能的時候。UDP 服務於很多知名應用層協議,包括網路文件系統(Network File System,NFS)、簡單網路管理協議(Simple Network Management Protocol,SNMP)、域名系統(DomainName System,DNS)以及簡單文件傳輸系統(Trivial File Transfer Protocol,TFTP)。

互聯網協議(Internet Protocol,IP)是用於報文交換網路的一種面向數據的協議。IP是在TCP/IP 協議中網路層的主要協議,任務是根據源主機和目的主機的地址傳送數據。為達到此目的,IP 定義了定址方法和數據報的封裝結構。第一個架構的主要版本,現在稱為IPv4,仍然是最主要的互聯網協議。當前世界各地正在積極部署IPv6。

面向有連接型 :在發送數據之前,需要在收發主機之間建立一條通信線路。在通信傳輸前後,專門進行建立和斷開連接的處理,可以避免發送無謂的數據。

面向無連接型 :發送數據時候不需要建立連接,發送端可以在任何時候自由發送數據,即使接收端不存在,發送端也可以將數據發送出去。

它是連接計算機與網路的硬體設備,無論是光纖連接,還是電纜,都必須藉助網卡才能實現數據的通信。

網卡的主要功能:

中繼器是在區域網環境下用來延長網路物理距離最簡單最廉價的設備,作用是將電纜傳過來的電信號或光信號復制、調整、放大再傳給另一個電纜,以此來解決線路傳輸過程中信號功率衰減的問題,延長網路的長度。

二層交換機工作於OSI模型的第二層數據鏈路層(物理層,數據鏈路層,網路層,傳輸層,會話層,表示層,應用層),它可以識別數據包中的MAC地址信息,根據MAC地址進行轉發,並將這些地址與對應的連接埠記錄在自己內部的一個地址表中

地址的唯一性:一個地址必須明確表示一個主體對象,同一個通信網路中不允許有兩個相同地址通信主體存在。

地址的層次性:MAC與IP地址都具有唯一性,但是只有IP地址具有層次性。
網路中通信地址越來越多,如何高效從一堆地址中找到通信的目標地址,這就需要地址具有層次性。 IP地址由網路號和主機號組成。IPv4是一個32位的地址,用4個十進制數字表示。以C類地址192.168.24.1為例,其中前24位是網路地址,後8位是主機地址。如果兩個IP地址在同一個子網內,則網路地址一定相同。

網關是從一個網路到另一個網路的關口,或者說是從一個網路通向其他網路的IP地址。比如有網路A和網路B,A的IP范圍是192.168.1.1~ 192.168.1.254,子網掩碼255.255.255.0,B的IP范圍是192.168.2.1 ~192.168.2.254,子網掩碼為255.255.255.0。在沒有路由器的情況下,A網路和B網路是不能進行TCP/IP通信的。TCP/IP協議會判定兩個網路中的主機屬於不同的網路。如果網路A中的主機發現數據包的目的主機不在自己所屬的網路中,它就會把數據包發送給自己的網關,再由網關轉發給網路B的網關,最終網路B的網關再轉發個網路B中的某個主機。

所以只有設置好網關的IP,TCP/IP協議才能實現不同網路之間的通信。網關的IP地址是具有路由功能的設備的IP地址,也就是路由器。

⑻ 計算機網路的體系結構

計算機網路的體系結構

計算機網路體系結構關注三方面內容:網路協議如何分層、各層協議、層間介面。下面是我整理的關於計算機網路的體系結構,希望大家認真閱讀!

一、計算機網路體系結構分層思想

首先,你要對計算機網路有一個模糊的認識---計算機網路是一個十分復雜的系統⊙﹏⊙。看看你電腦上有多少服務,那些服務有著各種協議,小白問度娘都不一定能弄懂。可想而知,對於那些計算機科學家(我覺得當年應該有很多玩通信的工程師吧,臆想而已。對這段歷史感興趣可以參考央視《互聯網時代》)來說,設計一種網路體系結構應該可能也是很難的,復雜度不是一般高啊。

可能你學沒學過匯編語言(Assembly Language),那麼請自行查資料。如果你學過匯編語言,不管學沒學好,從一開始接觸匯編語言你就會有感覺---這是什麼鬼。然後隨著歷史的發展,在匯編語言的基礎上出現了結構化程序設計語言,比如Fortran、Basic、C。這些結構化編程語言有別於上一代的是書上說的出現了"函數"的概念,從此寫代碼有了質的改變。自上而下,分而治之便是結構化程序設計的核心思想。

同樣,對於計算機網路來說也是這種思路。計算機網路體系結構可以看成一個很大的面向過程程序。如果將所有的內容都寫在一個main函數中,那麼這個程序就太尷尬了,到最後都不知道在寫些什麼了,大大加劇了程序設計的復雜度,以及後來程序維護的.復雜度...等等問題。也就是說不採用分治思想的計算機網路協調性差,設計復雜度高,網路通信出錯可能性也陡增。基於此原因,計算機網路體系結構的"分層"思想誕生了。

"分層"思想,通俗將就是常說的"分而治之"。ARPANET設計時提出的"分層"方法可將龐大而復雜的計算機網路問題,轉化為若干個局部的問題,而這些局部問題可以通過研究逐一攻破,那麼計算機之間通信就成為了可能。

二、OSI/RM模型和TCP/IP協議族的較量

1. OSI/RM

OSI/RM是英文Open System Interconnection Reference Model的縮寫,中文翻譯為"開放系統互聯基本參考模型"。在1983年,ISO發布正式文件後,也就有了現在所謂的七層協議的體系。

2. TCP/IP

TCP/IP並不是單一的協議,而是協議族。分為四層:應用層、運輸層、網際層、網路介面層。

OSI/RM和TCP/IP協議的PK中失敗了,究其原因,我認為主要有如下幾點:

1)OSI/RM 模型各層協議之間有重復功能。這就像寫代碼的時候有重復的代碼,上頭就想抽你倆嘴巴子,錢這么好賺么→_→。

2)OSI/RM 模型層數太多。也就是要說要實現網路互聯,你需要的硬體以及軟體就相對會更多。而且數據傳來傳去多了,運行效率也會降低。

3)OSI/RM 那幫人可能是棒通信領域的專家,這玩意比TCP/IP在實現上得多花不少錢。

基於這些事實,TCP/IP成了非法律上國際標準的事實上國際標准。

三、採用分層體系網路原因總結

1)並不是所有的設備都需要這么多層次。計算機網路中不同設備完成的任務不同,需要的功能也不同。除了計算機網路邊緣部分的端系統需要所有層次協議,其餘計算機網路核心部分部分則不需要這么多層次的協議。而且可以想像,多一層次就意味著多了部分硬體和軟體,成本就會增加。

PS:這里兩圖只是為了說明三層交換機比二層交換機價格高,至於高多少還取決於品牌和帶寬等因素。

2)每層設計實現相對獨立的功能,在層次設計(硬體和軟體設計)完成後,只需要提供向上的介面可供上層調用,。這樣做的好處是就像編程中的函數模塊化設計,我們只要知道高手設計的庫函數的API就行了,不需要具體軟體開發再編寫同樣高質量的代碼,從而服務了代碼搬運工。

3)模塊化協議層次大大的好啊。哪好了?雕版印刷術和活字印刷術的區別。如果某一層的技術發生變化後,只要層間介面不變,只要對某層提供的服務進行修改(添加和修改)即可。你想,這可以省多少錢啊。就像你電腦顯示屏壞了,你總不可能去新買個電腦吧,差不多就這意思。

4)降低實現和維護網路難度。如果那種服務不能使用了,那就查提供此種服務對應的那層,而不需再從頭查起。

;

⑼ 什麼是分層網路體系結構分層的含義是什麼

指的是將系統的組件分隔到不同的層中,每一層中的組件應保持內聚性,並且應大致在同一抽象級別;每一層都應與它下面的各層保持鬆散耦合。

分層架構的優點

1、開發人員的專業分工,專注理解某一層。由於某一層僅僅調用其相鄰下一層所提供的程序介面,只需要本層的介面和相鄰下一層的介面定義清晰完整,開發人員在開發某一層時就可以像關注集中於這一層所用的功能和技術。

2、可以很容易用新的實現來替換原有層次的實現。 只要前後提供的服務(介面)相同,即可替換。系統開發過程中,功能需求不斷變化,我們可以替換現有的層次以滿足新的需求變化。

3、降低了系統間的依賴。 比如業務邏輯層中的業務發生變化, 其他兩層即表現層以及數據訪問層程序也不需要變化。這大大降低了系統各層之間的依賴。

4、有利於復用。充分利用現有的功能程序組件,將已經辨識的具有相對獨立功能的層應用於新系統的開發,保證新系統開發的過程中,能夠將重點集中於辨識和實現應用系統特有的業務功能,最終縮短系統開發周期,提高系統的質量。


分層思想

分層是基於面向對象上的,是更高層次上的設計理念。在軟體開發技術的發展過程中,出現了很多優秀的思想與模式。這些思想和模式凝結了無數程序設計人員的實踐經驗和智慧,是軟體開發領域的精華。這其中有很多思想對分層架構設計有著重要的指導作用。

分層架構的弊端

1、級聯修改問題。一些復雜的業務中,由於業務流程發生變化,為了這個變化所有層都需要修改。

2、性能問題。本來是直接簡單的操作,需要在整個系統中層層傳遞,勢必造成性能的下降,同時也加大的開發的復雜度。

從上面的分析可以看出, 分層架構設計有許多優點同樣存在不足,在實際使用過程中,我們應該權衡利弊關系,選擇一種符合實際項目的最佳方案。

⑽ 網路協議分別是哪七層協議

你問的應該是OSI網路協議,一共七層。
最下面一層是物理層,關心的是介面,信號,和介質,只是說明標准,如EIA-232介面,乙太網,fddi令牌環網
第二層是數據鏈路層:一類是區域網中數據連路層協議:MAC子層協議,有LLC子層協議.另一類是廣域網的協議如:HDLC,PPP,SLIP.
第三層是網路層:主要是IP協議.
第四層是傳輸層:主要是面向連接的TCP傳輸控制協議.另一個是不面向連接的UDP用戶數據報協議.
第五層是會話層:主要是解決一個會話的開始進行和結束.(真的想不起有什麼協議)
第六層是表示層:主要是編碼如ASⅡ
第七層是應用層,就是應用程序裡面的拉,文件傳輸協議FTP、電子郵件傳輸協議SMTP、域名系統服務DNS、網路新聞傳輸協議NNTP和HTTP協議等。 HTTP協議(Hypertext Transfer Protocol,超文本傳輸協議)是用於從WWW服務...

閱讀全文

與計算機網路協議都是分層嗎相關的資料

熱點內容
手機網路忽然4g變2g 瀏覽:440
win7設置無線網路名 瀏覽:217
計算機網路自下而上 瀏覽:560
企業的網路營銷規劃 瀏覽:218
手機怎麼連接網路不能用 瀏覽:217
怎麼通過伺服器訪問網路 瀏覽:647
mac連不上網路和手機熱點 瀏覽:254
如何解決網路異常現象 瀏覽:86
網路連接顯示500 瀏覽:588
車載ce導航無線網路 瀏覽:531
特徵融合分類網路怎麼做 瀏覽:649
自己家的wifi沒有網路了怎麼設置 瀏覽:513
電腦怎麼蹭wifi的網路 瀏覽:995
電視只能用有線網路不能連接wifi 瀏覽:557
二級交換網路的交叉點怎麼計算 瀏覽:921
威寧企業網路營銷 瀏覽:444
有線電視網路能上wifi嗎 瀏覽:150
不想要電腦怎麼設置網路 瀏覽:805
天長教體局無線網路 瀏覽:185
月卡無線網路 瀏覽:67

友情鏈接