導航:首頁 > 網路營銷 > 神經網路起源於哪裡

神經網路起源於哪裡

發布時間:2022-08-10 23:51:05

① CNN(卷積神經網路)、RNN(循環神經網路)、DNN(深度神經網路)的內部網路結構有什麼區別

如下:

1、DNN:存在著一個問題——無法對時間序列上的變化進行建模。然而,樣本出現的時間順序對於自然語言處理、語音識別、手寫體識別等應用非常重要。對了適應這種需求,就出現了另一種神經網路結構——循環神經網路RNN。

2、CNN:每層神經元的信號只能向上一層傳播,樣本的處理在各個時刻獨立,因此又被稱為前向神經網路。

3、RNN:神經元的輸出可以在下一個時間戳直接作用到自身,即第i層神經元在m時刻的輸入,除了(i-1)層神經元在該時刻的輸出外,還包括其自身在(m-1)時刻的輸出!

介紹

神經網路技術起源於上世紀五、六十年代,當時叫感知機(perceptron),擁有輸入層、輸出層和一個隱含層。輸入的特徵向量通過隱含層變換達到輸出層,在輸出層得到分類結果。早期感知機的推動者是Rosenblatt。

在實際應用中,所謂的深度神經網路DNN,往往融合了多種已知的結構,包括卷積層或是LSTM單元。

② 神經網路演算法的人工神經網路

人工神經網路(Artificial Neural Networks,ANN)系統是 20 世紀 40 年代後出現的。它是由眾多的神經元可調的連接權值連接而成,具有大規模並行處理、分布式信 息存儲、良好的自組織自學習能力等特點。BP(Back Propagation)演算法又稱為誤差 反向傳播演算法,是人工神經網路中的一種監督式的學習演算法。BP 神經網路演算法在理 論上可以逼近任意函數,基本的結構由非線性變化單元組成,具有很強的非線性映射能力。而且網路的中間層數、各層的處理單元數及網路的學習系數等參數可根據具體情況設定,靈活性很大,在優化、信號處理與模式識別、智能控制、故障診斷等許 多領域都有著廣泛的應用前景。 人工神經元的研究起源於腦神經元學說。19世紀末,在生物、生理學領域,Waldeger等人創建了神經元學說。人們認識到復雜的神經系統是由數目繁多的神經元組合而成。大腦皮層包括有100億個以上的神經元,每立方毫米約有數萬個,它們互相聯結形成神經網路,通過感覺器官和神經接受來自身體內外的各種信息,傳遞至中樞神經系統內,經過對信息的分析和綜合,再通過運動神經發出控制信息,以此來實現機體與內外環境的聯系,協調全身的各種機能活動。
神經元也和其他類型的細胞一樣,包括有細胞膜、細胞質和細胞核。但是神經細胞的形態比較特殊,具有許多突起,因此又分為細胞體、軸突和樹突三部分。細胞體內有細胞核,突起的作用是傳遞信息。樹突是作為引入輸入信號的突起,而軸突是作為輸出端的突起,它只有一個。
樹突是細胞體的延伸部分,它由細胞體發出後逐漸變細,全長各部位都可與其他神經元的軸突末梢相互聯系,形成所謂「突觸」。在突觸處兩神經元並未連通,它只是發生信息傳遞功能的結合部,聯系界面之間間隙約為(15~50)×10米。突觸可分為興奮性與抑制性兩種類型,它相應於神經元之間耦合的極性。每個神經元的突觸數目正常,最高可達10個。各神經元之間的連接強度和極性有所不同,並且都可調整、基於這一特性,人腦具有存儲信息的功能。利用大量神經元相互聯接組成人工神經網路可顯示出人的大腦的某些特徵。
人工神經網路是由大量的簡單基本元件——神經元相互聯接而成的自適應非線性動態系統。每個神經元的結構和功能比較簡單,但大量神經元組合產生的系統行為卻非常復雜。
人工神經網路反映了人腦功能的若干基本特性,但並非生物系統的逼真描述,只是某種模仿、簡化和抽象。
與數字計算機比較,人工神經網路在構成原理和功能特點等方面更加接近人腦,它不是按給定的程序一步一步地執行運算,而是能夠自身適應環境、總結規律、完成某種運算、識別或過程式控制制。
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對於寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。 (1)人類大腦有很強的自適應與自組織特性,後天的學習與訓練可以開發許多各具特色的活動功能。如盲人的聽覺和觸覺非常靈敏;聾啞人善於運用手勢;訓練有素的運動員可以表現出非凡的運動技巧等等。
普通計算機的功能取決於程序中給出的知識和能力。顯然,對於智能活動要通過總結編製程序將十分困難。
人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以致超過設計者原有的知識水平。通常,它的學習訓練方式可分為兩種,一種是有監督或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督學習或稱無為導師學習,這時,只規定學習方式或某些規則,則具體的學習內容隨系統所處環境 (即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似人腦的功能。
(2)泛化能力
泛化能力指對沒有訓練過的樣本,有很好的預測能力和控制能力。特別是,當存在一些有雜訊的樣本,網路具備很好的預測能力。
(3)非線性映射能力
當對系統對於設計人員來說,很透徹或者很清楚時,則一般利用數值分析,偏微分方程等數學工具建立精確的數學模型,但當對系統很復雜,或者系統未知,系統信息量很少時,建立精確的數學模型很困難時,神經網路的非線性映射能力則表現出優勢,因為它不需要對系統進行透徹的了解,但是同時能達到輸入與輸出的映射關系,這就大大簡化設計的難度。
(4)高度並行性
並行性具有一定的爭議性。承認具有並行性理由:神經網路是根據人的大腦而抽象出來的數學模型,由於人可以同時做一些事,所以從功能的模擬角度上看,神經網路也應具備很強的並行性。
多少年以來,人們從醫學、生物學、生理學、哲學、信息學、計算機科學、認知學、組織協同學等各個角度企圖認識並解答上述問題。在尋找上述問題答案的研究過程中,這些年來逐漸形成了一個新興的多學科交叉技術領域,稱之為「神經網路」。神經網路的研究涉及眾多學科領域,這些領域互相結合、相互滲透並相互推動。不同領域的科學家又從各自學科的興趣與特色出發,提出不同的問題,從不同的角度進行研究。
下面將人工神經網路與通用的計算機工作特點來對比一下:
若從速度的角度出發,人腦神經元之間傳遞信息的速度要遠低於計算機,前者為毫秒量級,而後者的頻率往往可達幾百兆赫。但是,由於人腦是一個大規模並行與串列組合處理系統,因而,在許多問題上可以作出快速判斷、決策和處理,其速度則遠高於串列結構的普通計算機。人工神經網路的基本結構模仿人腦,具有並行處理特徵,可以大大提高工作速度。
人腦存貯信息的特點為利用突觸效能的變化來調整存貯內容,也即信息存貯在神經元之間連接強度的分布上,存貯區與計算機區合為一體。雖然人腦每日有大量神經細胞死亡 (平均每小時約一千個),但不影響大腦的正常思維活動。
普通計算機是具有相互獨立的存貯器和運算器,知識存貯與數據運算互不相關,只有通過人編出的程序使之溝通,這種溝通不能超越程序編制者的預想。元器件的局部損壞及程序中的微小錯誤都可能引起嚴重的失常。 心理學家和認知科學家研究神經網路的目的在於探索人腦加工、儲存和搜索信息的機制,弄清人腦功能的機理,建立人類認知過程的微結構理論。
生物學、醫學、腦科學專家試圖通過神經網路的研究推動腦科學向定量、精確和理論化體系發展,同時也寄希望於臨床醫學的新突破;信息處理和計算機科學家研究這一問題的目的在於尋求新的途徑以解決不能解決或解決起來有極大困難的大量問題,構造更加逼近人腦功能的新一代計算機。
人工神經網路早期的研究工作應追溯至上世紀40年代。下面以時間順序,以著名的人物或某一方面突出的研究成果為線索,簡要介紹人工神經網路的發展歷史。
1943年,心理學家W·Mcculloch和數理邏輯學家W·Pitts在分析、總結神經元基本特性的基礎上首先提出神經元的數學模型。此模型沿用至今,並且直接影響著這一領域研究的進展。因而,他們兩人可稱為人工神經網路研究的先驅。
1945年馮·諾依曼領導的設計小組試製成功存儲程序式電子計算機,標志著電子計算機時代的開始。1948年,他在研究工作中比較了人腦結構與存儲程序式計算機的根本區別,提出了以簡單神經元構成的再生自動機網路結構。但是,由於指令存儲式計算機技術的發展非常迅速,迫使他放棄了神經網路研究的新途徑,繼續投身於指令存儲式計算機技術的研究,並在此領域作出了巨大貢獻。雖然,馮·諾依曼的名字是與普通計算機聯系在一起的,但他也是人工神經網路研究的先驅之一。
50年代末,F·Rosenblatt設計製作了「感知機」,它是一種多層的神經網路。這項工作首次把人工神經網路的研究從理論探討付諸工程實踐。當時,世界上許多實驗室仿效製作感知機,分別應用於文字識別、聲音識別、聲納信號識別以及學習記憶問題的研究。然而,這次人工神經網路的研究高潮未能持續很久,許多人陸續放棄了這方面的研究工作,這是因為當時數字計算機的發展處於全盛時期,許多人誤以為數字計算機可以解決人工智慧、模式識別、專家系統等方面的一切問題,使感知機的工作得不到重視;其次,當時的電子技術工藝水平比較落後,主要的元件是電子管或晶體管,利用它們製作的神經網路體積龐大,價格昂貴,要製作在規模上與真實的神經網路相似是完全不可能的;另外,在1968年一本名為《感知機》的著作中指出線性感知機功能是有限的,它不能解決如異感這樣的基本問題,而且多層網路還不能找到有效的計算方法,這些論點促使大批研究人員對於人工神經網路的前景失去信心。60年代末期,人工神經網路的研究進入了低潮。
另外,在60年代初期,Widrow提出了自適應線性元件網路,這是一種連續取值的線性加權求和閾值網路。後來,在此基礎上發展了非線性多層自適應網路。當時,這些工作雖未標出神經網路的名稱,而實際上就是一種人工神經網路模型。
隨著人們對感知機興趣的衰退,神經網路的研究沉寂了相當長的時間。80年代初期,模擬與數字混合的超大規模集成電路製作技術提高到新的水平,完全付諸實用化,此外,數字計算機的發展在若干應用領域遇到困難。這一背景預示,向人工神經網路尋求出路的時機已經成熟。美國的物理學家Hopfield於1982年和1984年在美國科學院院刊上發表了兩篇關於人工神經網路研究的論文,引起了巨大的反響。人們重新認識到神經網路的威力以及付諸應用的現實性。隨即,一大批學者和研究人員圍繞著 Hopfield提出的方法展開了進一步的工作,形成了80年代中期以來人工神經網路的研究熱潮。
1985年,Ackley、Hinton和Sejnowski將模擬退火演算法應用到神經網路訓練中,提出了Boltzmann機,該演算法具有逃離極值的優點,但是訓練時間需要很長。
1986年,Rumelhart、Hinton和Williams提出了多層前饋神經網路的學習演算法,即BP演算法。它從證明的角度推導演算法的正確性,是學習演算法有理論依據。從學習演算法角度上看,是一個很大的進步。
1988年,Broomhead和Lowe第一次提出了徑向基網路:RBF網路。
總體來說,神經網路經歷了從高潮到低谷,再到高潮的階段,充滿曲折的過程。

③ BP神經網路的起源學說

人工神經元的研究起源於腦神經元學說。19世紀末,在生物、生理學領域,Waldeger等人創建了神經元學說。人們認識到復雜的神經系統是由數目繁多的神經元組合而成。大腦皮層包括有100億個以上的神經元,每立方毫米約有數萬個,它們互相聯結形成神經網路,通過感覺器官和神經接受來自身體內外的各種信息,傳遞至中樞神經系統內,經過對信息的分析和綜合,再通過運動神經發出控制信息,以此來實現機體與內外環境的聯系,協調全身的各種機能活動。 人工神經網路是由大量的簡單基本元件——神經元相互聯接而成的自適應非線性動態系統。每個神經元的結構和功能比較簡單,但大量神經元組合產生的系統行為卻非常復雜。
人工神經網路反映了人腦功能的若干基本特性,但並非生物系統的逼真描述,只是某種模仿、簡化和抽象。與數字計算機比較,人工神經網路在構成原理和功能特點等方面更加接近人腦,它不是按給定的程序一步一步地執行運算,而是能夠自身適應環境、總結規律、完成某種運算、識別或過程式控制制。神經元也和其他類型的細胞一樣,包括有細胞膜、細胞質和細胞核。但是神經細胞的形態比較特殊,具有許多突起,因此又分為細胞體、軸突和樹突三部分。細胞體內有細胞核,突起的作用是傳遞信息。樹突是作為引入輸入信號的突起,而軸突是作為輸出端的突起,它只有一個。 若從速度的角度出發,人腦神經元之間傳遞信息的速度要遠低於計算機,前者為毫秒量級,而後者的頻率往往可達幾百兆赫。但是,由於人腦是一個大規模並行與串列組合處理系統,因而,在許多問題上可以作出快速判斷、決策和處理,其速度則遠高於串列結構的普通計算機。人工神經網路的基本結構模仿人腦,具有並行處理特徵,可以大大提高工作速度。
利用突觸效能的變化來調整存貯內容
人腦存貯信息的特點為利用突觸效能的變化來調整存貯內容,也即信息存貯在神經元之間連接強度的分布上,存貯區與計算機區合為一體。雖然人腦每日有大量神經細胞死亡 (平均每小時約一千個),但不影響大腦的正常思維活動。
普通計算機是具有相互獨立的存貯器和運算器,知識存貯與數據運算互不相關,只有通過人編出的程序使之溝通,這種溝通不能超越程序編制者的預想。元器件的局部損壞及程序中的微小錯誤都可能引起嚴重的失常。
人類大腦有很強的自適應與自組織特性,後天的學習與訓練可以開發許多各具特色的活動功能。如盲人的聽覺和觸覺非常靈敏;聾啞人善於運用手勢;訓練有素的運動員可以表現出非凡的運動技巧等等。
普通計算機的功能取決於程序中給出的知識和能力。顯然,對於智能活動要通過總結編製程序將十分困難。

④ 人工神經網路的基礎數學模型來自哪裡

「純意念控制」人工神經康復機器人系統2014年6月14日在天津大學和天津市人民醫院共同舉辦的發表會上,由雙方共同研製的人工神經康復機器人「神工一號」正式亮相。

人工神經網路是由大量處理單元互聯組成的非線性、自適應信息處理系統。它是在現代神經科學研究成果的基礎上提出的,試圖通過模擬大腦神經網路處理、記憶信息的方式進行信息處理。

基本特徵:

(1)非線性非線性關系是自然界的普遍特性。大腦的智慧就是一種非線性現象。人工神經元處於激活或抑制二種不同的狀態,這種行為在數學上表現為一種非線性關系。具有閾值的神經元構成的網路具有更好的性能,可以提高容錯性和存儲容量。

(2)非局限性 一個神經網路通常由多個神經元廣泛連接而成。一個系統的整體行為不僅取決於單個神經元的特徵,而且可能主要由單元之間的相互作用、相互連接所決定。通過單元之間的大量連接模擬大腦的非局限性。聯想記憶是非局限性的典型例子。

(3)非常定性 人工神經網路具有自適應、自組織、自學習能力。神經網路不但處理的信息可以有各種變化,而且在處理信息的同時,非線性動力系統本身也在不斷變化。經常採用迭代過程描寫動力系統的演化過程。

⑤ CNN、RNN、DNN的內部網路結構有什麼區別

從廣義上來說,NN(或是更美的DNN)確實可以認為包含了CNN、RNN這些具體的變種形式。在實際應用中,所謂的深度神經網路DNN,往往融合了多種已知的結構,包括卷積層或是LSTM單元。但是就題主的意思來看,這里的DNN應該特指全連接的神經元結構,並不包含卷積單元或是時間上的關聯。
因此,題主一定要將DNN、CNN、RNN等進行對比,也未嘗不可。其實,如果我們順著神經網路技術發展的脈絡,就很容易弄清這幾種網路結構發明的初衷,和他們之間本質的區別。神經網路技術起源於上世紀五、六十年代,當時叫感知機(perceptron),擁有輸入層、輸出層和一個隱含層。輸入的特徵向量通過隱含層變換達到輸出層,在輸出層得到分類結果。
早期感知機的推動者是Rosenblatt。(扯一個不相關的:由於計算技術的落後,當時感知器傳輸函數是用線拉動變阻器改變電阻的方法機械實現的,腦補一下科學家們扯著密密麻麻的導線的樣子…)但是,Rosenblatt的單層感知機有一個嚴重得不能再嚴重的問題,即它對稍復雜一些的函數都無能為力(比如最為典型的「異或」操作)。
連異或都不能擬合,你還能指望這貨有什麼實際用途么。隨著數學的發展,這個缺點直到上世紀八十年代才被Rumelhart、Williams、Hinton、LeCun等人(反正就是一票大牛)發明的多層感知機(multilayer perceptron)克服。多層感知機,顧名思義,就是有多個隱含層的感知機。

⑥ SPSS統計分析案例:多層感知器神經網路

SPSS統計分析案例:多層感知器神經網路
神經網路模型起源於對人類大腦思維模式的研究,它是一個非線性的數據建模工具, 由輸入層和輸出層、 一個或者多個隱藏層構成神經元,神經元之間的連接賦予相關的權重, 訓練學習演算法在迭代過程中不斷調整這些權重,從而使得預測誤差最小化並給出預測精度。
在SPSS神經網路中,包括多層感知器(MLP)和徑向基函數(RBF)兩種方法。
本期主要學習多層感知器神經網路,要把它講清楚是比較困難的,為了能直觀感受它的功能,首先以一個案例開始,最後再總結知識。
案例數據
該數據文件涉及某銀行在降低貸款拖欠率方面的舉措。該文件包含 700 位過去曾獲得貸款的客戶財務和人口統計信息。請使用這 700 名客戶的隨機樣本創建多層感知器神經網路模型。銀行需要此模型對新的客戶數據按高或低信用風險對他們進行分類。
第一次分析:菜單參數
要運行「多層感知器」分析,請從菜單中選擇:
分析 > 神經網路 > 多層感知器
如上圖所示,MLP主面板共有8個選項卡,至少需要設置其中"變數"、"分區"、"輸出"、"保存"、"導出"等5個選項卡,其他接受軟體默認設置。
▌ "變數"選項卡
將"是否拖欠"移入因變數框;
將分類變數"學歷"移入因子框,其他數值變數移入"協變數"框;
因各協變數量綱不同,選擇"標准化"處理;
▌ "分區"選項卡
在此之前,首先在 "轉換 > 隨機數生成器"菜單中設置隨機數固定種子為9191972(此處同SPSS官方文檔,用戶可以自由設定),因為"分區"選項卡中,要求對原始數據文件進行隨機化抽樣,將數據劃分為"訓練樣本"、"支持樣本"、"檢驗樣本"3個區塊,為了隨機過程可重復,所以此處指定固定種子一枚;
初次建模,先抽樣70%作為訓練樣本,用於完成自學習構建神經網路模型,30%作為支持樣本,用於評估所建立模型的性能,暫不分配檢驗樣本;
▌ "輸出"選項卡
勾選"描述"、"圖";
勾選"模型摘要"、"分類結果"、"預測實測圖";
勾選"個案處理摘要";
構成"自變數重要性分析";
這是第一次嘗試性的分析,主要參數設置如上,其他選項卡接受軟體默認設置,最後返回主面板,點擊"確定"按鈕,軟體開始執行MLP過程。
第一次分析產生的結果:
主要看重點的結果,依次如下:
個案處理摘要表,700個貸款客戶的記錄,其中480個客戶被分配到訓練樣本,佔比68.6%,另外220個客戶分配為支持樣本。
模型摘要表,首次構建的MLP神經網路模型其不正確預測百分比為12.7%,獨立的支持樣本檢驗模型的不正確百分比為20.9%,提示"超出最大時程數",模型非正常規則中止,顯示有過度學習的嫌疑。
判斷:首次建立的模型需要預防過度訓練。
第二次分析:菜單參數
首次分析懷疑訓練過度,所以第二次分析主要是新增檢驗樣本以及輸出最終的模型結果。
運行「多層感知器」分析,請從菜單中選擇:
分析 > 神經網路 > 多層感知器
▌ "分區"選項卡
對樣本進行重新分配,總700樣本,支持樣本繼續30%,訓練樣本由原來的70%縮減至50%,另外的20%分配給獨立的檢驗樣本空間;
▌ "保存"選項卡
保存每個因變數的預測值或類別;
保存每個因變數的預測擬概率;
▌ "導出"選項卡
將突觸權重估算值導出到XML文件;
給XML模型文件起名並制定存放路徑;
其他選項卡的操作和第一次分析保持一致。返回主面板,點擊"確定"開始執行第二次分析。
第一次分析產生的結果:
總樣本在3個分區的分配比例。
MLP神經網路圖,模型包括1個輸入層、1個隱藏層和1個輸出層,輸入層神經元個數12個,隱藏層9個,輸出層2個。
模型摘要表,模型誤差在1個連續步驟中未出現優化減少現象,模型按預定中止。模型在3個分區中的不正確預測百分比較接近。
模型分類表,軟體默認採用0.5作為正確和錯誤的概率分界,將3大分區樣本的正確率進行交叉對比,顯示出預測為NO,即預測為不拖欠的概率高於拖欠,模型對有拖欠的貸款客戶風險識別能力較低。
預測-實測圖,按照貸款客戶是否拖欠與預測結果進行分組,縱坐標為預測概率。以0.5為分界時,對優質客戶的識別效果較好,但是有較大的概率在識別有拖欠客戶上出錯。
顯然以0.5作為分界並不是最優解,可以嘗試將分界下移至0.3左右,此操作會使第四個箱圖中大量欠貸客戶正確地重新分類為欠貸者,提高風險識別能力。
自變數重要性圖,重要性圖為重要性表格中值的條形圖,以重要性值降序排序。其顯示與客戶穩定性(employ、address)和負債(creddebt、debtinc)相關的變數對於網路如何對客戶進行分類有重大影響;
最後來看導出的XML模型文件:
以XML文件存儲了第二次構建的MLP神經網路模型,可以用於新客戶的分類和風險識別。
新客戶分類
假設現在有150名新客戶,現在需要採用此前建立的模型,對這些客戶進行快速的風險分類和識別。
打開新客戶數據,菜單中選擇:
實用程序 > 評分向導
型"XML文件,點擊"下一步":
檢查新數據文件變數的定義是否准確。下一步。
選擇輸出"預測類別的概率"、"預測值"。完成。
新客戶數據文件新增3列,分別給出每一個新客戶的預測概率和風險分類(是否欠貸)。
多層感知器神經網路 總結
一種前饋式有監督的學習技術;
多層感知器可以發現極為復雜的關系;
如果因變數是分類型,神經網路會根據輸入數據,將記錄劃分為最適合的類別;
如果因變數是連續型,神將網路預測的連續值是輸入數據的某個連續函數;
建議創建訓練-檢驗-支持三個分區,網路訓練學習將更有效;
可將模型導出成 XML 格式對新的數據進行打分;

閱讀全文

與神經網路起源於哪裡相關的資料

熱點內容
不想要電腦怎麼設置網路 瀏覽:797
天長教體局無線網路 瀏覽:178
月卡無線網路 瀏覽:62
湖南計算機網路技術專業哪個好 瀏覽:238
滲透測試網路安全嗎 瀏覽:445
wps重命名網路異常 瀏覽:834
網路DTA是什麼 瀏覽:417
電腦老是和網路斷開連接 瀏覽:741
現在看網路小說的是哪些群體 瀏覽:722
wifi總閃連不上網路 瀏覽:783
網路營銷核心服務有哪些 瀏覽:808
lol網路連接失敗結束哪個進程 瀏覽:486
已知ip和密碼怎麼連接網路 瀏覽:121
電腦能連無線網路上網嗎 瀏覽:296
網路基站信號檢測 瀏覽:317
巨人網路集團是什麼公司 瀏覽:97
vivoy81怎麼連接隱藏網路 瀏覽:952
哪裡有免費網路玩游戲 瀏覽:246
安利通過網路怎麼辦理 瀏覽:163
磁場是否影響網路信號 瀏覽:952

友情鏈接