導航:首頁 > 網路營銷 > 神經網路演算法用了哪些思維

神經網路演算法用了哪些思維

發布時間:2024-08-14 09:43:15

A. 人工智慧時代,神經網路的原理及使用方法 | 微課堂

人工智慧時代已經悄然來臨,在計算機技術高速發展的未來,機器是否能代替人腦?也許有些讀者會說,永遠不可能,因為人腦的思考包含感性邏輯。事實上,神經網路演算法正是在模仿人腦的思考方式。想不想知道神經網路是如何「思考」的呢?下面我向大家簡單介紹一下神經網路的原理及使用方法。

所謂人工智慧,就是讓機器具備人的思維和意識。人工智慧主要有三個學派——行為主義、符號主義和連接主義。

行為主義是基於控制論,是在構建感知動作的控制系統。理解行為主義有個很好的例子,就是讓機器人單腳站立,通過感知要摔倒的方向控制兩只手的動作,保持身體的平衡,這就構建了一個感知動作控制系統。

符號主義是基於算數邏輯和表達式。求解問題時,先把問題描述為表達式,再求解表達式。如果你在求解某個問題時,可以用if case這樣的條件語句,和若干計算公式描述出來,這就使用了符號主義的方法,比如「專家系統」。符號主義可以認為是用公式描述的人工智慧,它讓計算機具備了理性思維。但是人類不僅具備理性思維,還具備無法用公式描述的感性思維。比如,如果你看過這篇推送,下回再見到「符號主義」幾個字,你會覺得眼熟,會想到這是人工智慧相關的知識,這是人的直覺,是感性的。

連接主義就是在模擬人的這種感性思維,是在仿造人腦內的神經元連接關系。這張圖給出了人腦中的一根神經元,左側是神經元的輸入,「軸突」部分是神經元的輸出。人腦就是由860億個這樣的神經元首尾相接組成的網路。

神經網路可以讓計算機具備感性思維。我們首先理解一下基於連接主義的神經網路設計過程。這張圖給出了人類從出生到24個月神經網路的變化:

隨著我們的成長,大量的數據通過視覺、聽覺湧入大腦,使我們的神經網路連接,也就是這些神經元連線上的權重發生了變化,有些線上的權重增強了,有些線上的權重減弱了。

我們要用計算機仿出這些神經網路連接關系,讓計算機具備感性思維。

首先需要准備數據,數據量越大越好,以構成特徵和標簽對。如果想識別貓,就要有大量貓的圖片和這張圖片是貓的標簽構成特徵標簽對,然後搭建神經網路的網路結構,再通過反向傳播優化連接的權重,直到模型的識別准確率達到要求,得到最優的連線權重,把這個模型保存起來。最後用保存的模型輸入從未見過的新數據,它會通過前向傳播輸出概率值,概率值最大的一個就是分類和預測的結果。

我們舉個例子來感受一下神經網路的設計過程。鳶尾花可以分為三類:狗尾鳶尾、雜色鳶尾和佛吉尼亞鳶尾。我們拿出一張圖,需要讓計算機判斷這是哪類鳶尾花。人們通過經驗總結出了規律:通過測量花的花萼長、花萼寬、花瓣長、花瓣寬分辨出鳶尾花的類別,比如花萼長>花萼寬,並且花瓣長/花瓣寬>2,則可以判定為這是第一種,雜色鳶尾。看到這里,也許有些讀者已經想到用if、case這樣的條件語句來實現鳶尾花的分類。沒錯,條件語句根據這些信息可以判斷鳶尾花分類,這是一個非常典型的專家系統,這個過程是理性計算。只要有了這些數據,就可以通過條件判定公式計算出是哪類鳶尾花。但是我們發現鳶尾花的種植者在識別鳶尾花的時候並不需要這么理性的計算,因為他們見識了太多的鳶尾花,一看就知道是哪種,而且隨著經驗的增加,識別的准確率會提高。這就是直覺,是感性思維,也是我們這篇文章想要和大家分享的神經網路方法。

這種神經網路設計過程首先需要採集大量的花萼長、花萼寬、花瓣長、花瓣寬,和它們所對應的是哪種鳶尾花。花萼長、花萼寬、花瓣長、花瓣寬叫做輸入特徵,它們對應的分類叫做標簽。大量的輸入特徵和標簽對構建出數據集,再把這個數據集喂入搭建好的神經網路結構,網路通過反向傳播優化參數,得到模型。當有新的、從未見過的輸入特徵,送入神經網路時,神經網路會輸出識別的結果。

展望21世紀初,在近十年神經網路理論研究趨向的背景下,神經網路理論的主要前沿領域包括:

一、對智能和機器關系問題的認識進一步增長。

研究人類智力一直是科學發展中最有意義,也是空前困難的挑戰性問題。人腦是我們所知道的唯一智能系統,具有感知識別、學習、聯想、記憶、推理等智能。我們通過不斷 探索 人類智能的本質以及聯結機制,並用人工系統復現或部分復現,製造各種智能機器,這樣可使人類有更多的時間和機會從事更為復雜、更富創造性的工作。

神經網路是由大量處理單元組成的非線性、自適應、自組織系統,是在現代神經科學研究成果的基礎上提出的,試圖模擬神經網路加工、記憶信息的方式,設計一種新的機器,使之具有人腦風格的信息處理能力。智能理論所面對的課題來自「環境——問題——目的」,有極大的誘惑力與壓力,它的發展方向將是把基於連接主義的神經網路理論、基於符號主義的人工智慧專家系統理論和基於進化論的人工生命這三大研究領域,在共同追求的總目標下,自發而有機地結合起來。

二、神經計算和進化計算的重大發展。

計算和演算法是人類自古以來十分重視的研究領域,本世紀30年代,符號邏輯方面的研究非常活躍。近年來,神經計算和進化計算領域很活躍,有新的發展動向,在從系統層次向細胞層次轉化里,正在建立數學理論基礎。隨著人們不斷 探索 新的計算和演算法,將推動計算理論向計算智能化方向發展,在21世紀人類將全面進入信息 社會 ,對信息的獲取、處理和傳輸問題,對網路路由優化問題,對數據安全和保密問題等等將有新的要求,這些將成為 社會 運行的首要任務。因此,神經計算和進化計算與高速信息網路理論聯系將更加密切,並在計算機網路領域中發揮巨大的作用,例如大范圍計算機網路的自組織功能實現就要進行進化計算。

人類的思維方式正在轉變,從線性思維轉到非線性思維神經元,神經網路都有非線性、非局域性、非定常性、非凸性和混沌等特性。我們在計算智能的層次上研究非線性動力系統、混沌神經網路以及對神經網路的數理研究,進一步研究自適應性子波、非線性神經場的興奮模式、神經集團的宏觀力學等。因為,非線性問題的研究是神經網路理論發展的一個最大動力,也是它面臨的最大挑戰。

以上就是有關神經網路的相關內容,希望能為讀者帶來幫助。

以上內容由蘇州空天信息研究院謝雨宏提供。

B. 神經網路的具體演算法

神經網路和粗集理論是智能信息處理的兩種重要的方法,其任務是從大量觀察和實驗數據中獲取知識、表達知識和推理決策規則。粗集理論是基於不可分辯性思想和知識簡化方法,從數據中推理邏輯規則,適合於數據簡化、數據相關性查找、發現數據模式、從數據中提取規則等。神經網路是利用非線性映射的思想和並行處理方法,用神經網路本身的結構表達輸入與輸出關聯知識的隱函數編碼,具有較強的並行處理、逼近和分類能力。在處理不準確、不完整的知識方面,粗集理論和神經網路都顯示出較強的適應能力,然而兩者處理信息的方法是不同的,粗集方法模擬人類的抽象邏輯思維,神經網路方法模擬形象直覺思維,具有很強的互補性。
首先,通過粗集理論方法減少信息表達的屬性數量,去掉冗餘信息,使訓練集簡化,減少神經網路系統的復雜性和訓練時間;其次利用神經網路優良的並行處理、逼近和分類能力來處理風險預警這類非線性問題,具有較強的容錯能力;再次,粗集理論在簡化知識的同時,很容易推理出決策規則,因而可以作為後續使用中的信息識別規則,將粗集得到的結果與神經網路得到的結果相比較,以便相互驗證;最後,粗集理論的方法和結果簡單易懂,而且以規則的形式給出,通過與神經網路結合,使神經網路也具有一定的解釋能力。因此,粗集理論與神經網路融合方法具有許多優點,非常適合處理諸如企業戰略風險預警這類非結構化、非線性的復雜問題。

關於輸入的問題--輸入模塊。
這一階段包括初始指標體系確定,根據所確定的指標體系而形成的數據採集系統及數據預處理。企業戰略風險的初始評價指標如下:
企業外部因素:政治環境(法律法規及其穩定性),經濟環境(社會總體收入水平,物價水平,經濟增長率),產業結構(進入產業障礙,競爭對手數量及集中程度),市場環境(市場大小)。
企業內部因素:企業盈利能力(銷售利潤率,企業利潤增長率),產品競爭能力(產品銷售率,市場佔有率),技術開發能力(技術開發費比率,企業專業技術人才比重),資金籌措能力(融資率),企業職工凝聚力(企業員工流動率),管理人才資源,信息資源;戰略本身的風險因素(戰略目標,戰略重點,戰略措施,戰略方針)。
本文所建立的預警指標系統是針對普遍意義上的企業,當該指標系統運用於實際企業時,需要對具體指標進行適當的增加或減少。因為各個企業有其具體的戰略目標、經營活動等特性。
計算處理模塊。這一模塊主要包括粗集處理部分和神經網路處理部分。
粗集處理階段。根據粗集的簡化規則及決策規則對數據進行約簡,構造神經網路的初始結構,便於神經網路的訓練。
企業戰略風險分析需要解決的問題是在保證對戰略風險狀態評價一致的情況下,選擇最少的特徵集,以便減少屬性維數、降低計算工作量和減少不確定因素的影響,粗集理論中的屬性約簡演算法可以很好地解決這個問題。

然後是輸出模塊~
該模塊是對將發生的戰略風險問題發出警報。
按照戰略風險大小強弱程度的不同,可將其分為三個層次。第一層次是輕微戰略風險,是損失較小、後果不甚明顯,對企業的戰略管理活動不構成重要影響的各類風險。這類風險一般情況下無礙大局,僅對企業形成局部和微小的傷害。第二層次是一般戰略風險,是損失適中、後果明顯但不構成致命性威脅的各類風險。這類風險的直接後果使企業遭受一定損失,並對其戰略管理的某些方面帶來較大的不利影響或留有一定後遺症。第三層次是致命性戰略風險,指損失較大,後果嚴重的風險。這類風險的直接後果往往會威脅企業的生存,導致重大損失,使之一時不能恢復或遭受破產。在實際操作中,每個企業應根據具體的狀況,將這三個層次以具體的數值表現出來。

下面回答你的問題:

總的來說,神經網路輸入的是初始指標體系;輸出的是風險。

你所說的風險應該說屬於輸出范疇,具體等級分為三級:無警、輕警、重警,並用綠、黃、紅三種顏色燈號表示。其中綠燈區表示企業綜合指標所反映的實際運行值與目標值基本一致,運行良好;黃燈區表示企業綜合指標所反映的實際運行值與目標值偏離較大,要引起企業的警惕。若採取一定的措施可轉為綠燈區,若不重視可在短期內轉為紅燈區;紅燈區則表示這種偏離超過企業接受的可能,並給企業帶來整體性的重大損失。例如:銷售利潤率極低、資產負債率過高,資源配置不合理、缺乏發展後勁等,必須找出原因,繼而採取有效措施,使企業的戰略管理活動始終處於「安全」的狀態。

希望以上答案能夠幫到你,祝你好運~

C. 神經網路演算法原理

4.2.1 概述

人工神經網路的研究與計算機的研究幾乎是同步發展的。1943年心理學家McCulloch和數學家Pitts合作提出了形式神經元的數學模型,20世紀50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函數的概念提出了神經網路的一種數學模型,1986年,Rumelhart及LeCun等學者提出了多層感知器的反向傳播演算法等。

神經網路技術在眾多研究者的努力下,理論上日趨完善,演算法種類不斷增加。目前,有關神經網路的理論研究成果很多,出版了不少有關基礎理論的著作,並且現在仍是全球非線性科學研究的熱點之一。

神經網路是一種通過模擬人的大腦神經結構去實現人腦智能活動功能的信息處理系統,它具有人腦的基本功能,但又不是人腦的真實寫照。它是人腦的一種抽象、簡化和模擬模型,故稱之為人工神經網路(邊肇祺,2000)。

人工神經元是神經網路的節點,是神經網路的最重要組成部分之一。目前,有關神經元的模型種類繁多,最常用最簡單的模型是由閾值函數、Sigmoid 函數構成的模型(圖 4-3)。

儲層特徵研究與預測

以上演算法是對每個樣本作權值修正,也可以對各個樣本計算δj後求和,按總誤差修正權值。

閱讀全文

與神經網路演算法用了哪些思維相關的資料

熱點內容
重啟路由器後網路受限怎麼回事 瀏覽:870
如何測試攝像頭有沒有網路 瀏覽:806
網路營銷的廣告 瀏覽:105
當貝市場連接網路錯誤 瀏覽:904
離婚狀況從網路上哪裡可以查詢 瀏覽:852
網路播放器軟體更新 瀏覽:570
密碼攻防與網路空間 瀏覽:50
蘋果手機如果沒網路能注冊id嗎 瀏覽:43
關閉移動網路為何還產生流量 瀏覽:932
好友是什麼網路用語 瀏覽:35
沒有網路的家用路由器 瀏覽:248
如何設置路由器為別人家的網路 瀏覽:362
自製的網路路由器 瀏覽:370
勉縣網路斷到什麼時候 瀏覽:590
光電網路怎樣設置無線路由器 瀏覽:614
網路用語油罐子是什麼意思 瀏覽:963
忘記計算機網路域控密碼 瀏覽:56
網路出現異常30256怎麼解決 瀏覽:579
手機網路變慢啥原因 瀏覽:628
防止網路連接不可用 瀏覽:129

友情鏈接