1. 神經網路演算法原理
一共有四種演算法及原理,如下所示:
1、自適應諧振理論(ART)網路
自適應諧振理論(ART)網路具有不同的方案。一個ART-1網路含有兩層一個輸入層和一個輸出層。這兩層完全互連,該連接沿著正向(自底向上)和反饋(自頂向下)兩個方向進行。
2、學習矢量量化(LVQ)網路
學習矢量量化(LVQ)網路,它由三層神經元組成,即輸入轉換層、隱含層和輸出層。該網路在輸入層與隱含層之間為完全連接,而在隱含層與輸出層之間為部分連接,每個輸出神經元與隱含神經元的不同組相連接。
3、Kohonen網路
Kohonen網路或自組織特徵映射網路含有兩層,一個輸入緩沖層用於接收輸入模式,另一個為輸出層,輸出層的神經元一般按正則二維陣列排列,每個輸出神經元連接至所有輸入神經元。連接權值形成與已知輸出神經元相連的參考矢量的分量。
4、Hopfield網路
Hopfield網路是一種典型的遞歸網路,這種網路通常只接受二進制輸入(0或1)以及雙極輸入(+1或-1)。它含有一個單層神經元,每個神經元與所有其他神經元連接,形成遞歸結構。
(1)自學習演算法有哪些神經網路擴展閱讀:
人工神經網路演算法的歷史背景:
該演算法系統是 20 世紀 40 年代後出現的。它是由眾多的神經元可調的連接權值連接而成,具有大規模並行處理、分布式信息存儲、良好的自組織自學習能力等特點。
BP演算法又稱為誤差反向傳播演算法,是人工神經網路中的一種監督式的學習演算法。BP 神經網路演算法在理論上可以逼近任意函數,基本的結構由非線性變化單元組成,具有很強的非線性映射能力。
而且網路的中間層數、各層的處理單元數及網路的學習系數等參數可根據具體情況設定,靈活性很大,在優化、信號處理與模式識別、智能控制、故障診斷等許 多領域都有著廣泛的應用前景。