『壹』 卷積神經網路每層提取的特徵是什麼樣的
卷積神經網路是一個多層的神經網路,每層由多個二維平面組成,而每個平面由多個獨立神經元組成。
圖:卷積神經網路的概念示範:輸入圖像通過和三個可訓練的濾波器和可加偏置進行卷積,濾波過程如圖一,卷積後在C1層產生三個特徵映射圖,然後特徵映射圖中每組的四個像素再進行求和,加權值,加偏置,通過一個Sigmoid函數得到三個S2層的特徵映射圖。這些映射圖再進過濾波得到C3層。這個層級結構再和S2一樣產生S4。最終,這些像素值被光柵化,並連接成一個向量輸入到傳統的神經網路,得到輸出。
一般地,C層為特徵提取層,每個神經元的輸入與前一層的局部感受野相連,並提取該局部的特徵,一旦該局部特徵被提取後,它與其他特徵間的位置關系也隨之確定下來;S層是特徵映射層,網路的每個計算層由多個特徵映射組成,每個特徵映射為一個平面,平面上所有神經元的權值相等。特徵映射結構採用影響函數核小的sigmoid函數作為卷積網路的激活函數,使得特徵映射具有位移不變性。
此外,由於一個映射面上的神經元共享權值,因而減少了網路自由參數的個數,降低了網路參數選擇的復雜度。卷積神經網路中的每一個特徵提取層(C-層)都緊跟著一個用來求局部平均與二次提取的計算層(S-層),這種特有的兩次特徵提取結構使網路在識別時對輸入樣本有較高的畸變容忍能力。
『貳』 卷積神經網路只適用於圖像處理么
『叄』 前饋神經網路、BP神經網路、卷積神經網路的區別與聯系
一、計算方法不同
1、前饋神經網路:一種最簡單的神經網路,各神經元分層排列。每個神經元只與前一層的神經元相連。接收前一層的輸出,並輸出給下一層.各層間沒有反饋。
2、BP神經網路:是一種按照誤差逆向傳播演算法訓練的多層前饋神經網路。
3、卷積神經網路:包含卷積計算且具有深度結構的前饋神經網路。
二、用途不同
1、前饋神經網路:主要應用包括感知器網路、BP網路和RBF網路。
2、BP神經網路:
(1)函數逼近:用輸入向量和相應的輸出向量訓練一個網路逼近一個函數;
(2)模式識別:用一個待定的輸出向量將它與輸入向量聯系起來;
(3)分類:把輸入向量所定義的合適方式進行分類;
(4)數據壓縮:減少輸出向量維數以便於傳輸或存儲。
3、卷積神經網路:可應用於圖像識別、物體識別等計算機視覺、自然語言處理、物理學和遙感科學等領域。
聯系:
BP神經網路和卷積神經網路都屬於前饋神經網路,三者都屬於人工神經網路。因此,三者原理和結構相同。
三、作用不同
1、前饋神經網路:結構簡單,應用廣泛,能夠以任意精度逼近任意連續函數及平方可積函數.而且可以精確實現任意有限訓練樣本集。
2、BP神經網路:具有很強的非線性映射能力和柔性的網路結構。網路的中間層數、各層的神經元個數可根據具體情況任意設定,並且隨著結構的差異其性能也有所不同。
3、卷積神經網路:具有表徵學習能力,能夠按其階層結構對輸入信息進行平移不變分類。
(3)卷積網路對什麼敏感擴展閱讀:
1、BP神經網路優劣勢
BP神經網路無論在網路理論還是在性能方面已比較成熟。其突出優點就是具有很強的非線性映射能力和柔性的網路結構。網路的中間層數、各層的神經元個數可根據具體情況任意設定,並且隨著結構的差異其性能也有所不同。但是BP神經網路也存在以下的一些主要缺陷。
①學習速度慢,即使是一個簡單的問題,一般也需要幾百次甚至上千次的學習才能收斂。
②容易陷入局部極小值。
③網路層數、神經元個數的選擇沒有相應的理論指導。
④網路推廣能力有限。
2、人工神經網路的特點和優越性,主要表現在以下三個方面
①具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、效益預測,其應用前途是很遠大的。
②具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。
③具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。
『肆』 卷積神經網路演算法是什麼
一維構築、二維構築、全卷積構築。
卷積神經網路(Convolutional Neural Networks, CNN)是一類包含卷積計算且具有深度結構的前饋神經網路(Feedforward Neural Networks),是深度學習(deep learning)的代表演算法之一。
卷積神經網路具有表徵學習(representation learning)能力,能夠按其階層結構對輸入信息進行平移不變分類(shift-invariant classification),因此也被稱為「平移不變人工神經網路(Shift-Invariant Artificial Neural Networks, SIANN)」。
卷積神經網路的連接性:
卷積神經網路中卷積層間的連接被稱為稀疏連接(sparse connection),即相比於前饋神經網路中的全連接,卷積層中的神經元僅與其相鄰層的部分,而非全部神經元相連。具體地,卷積神經網路第l層特徵圖中的任意一個像素(神經元)都僅是l-1層中卷積核所定義的感受野內的像素的線性組合。
卷積神經網路的稀疏連接具有正則化的效果,提高了網路結構的穩定性和泛化能力,避免過度擬合,同時,稀疏連接減少了權重參數的總量,有利於神經網路的快速學習,和在計算時減少內存開銷。
卷積神經網路中特徵圖同一通道內的所有像素共享一組卷積核權重系數,該性質被稱為權重共享(weight sharing)。權重共享將卷積神經網路和其它包含局部連接結構的神經網路相區分,後者雖然使用了稀疏連接,但不同連接的權重是不同的。權重共享和稀疏連接一樣,減少了卷積神經網路的參數總量,並具有正則化的效果。
在全連接網路視角下,卷積神經網路的稀疏連接和權重共享可以被視為兩個無限強的先驗(pirior),即一個隱含層神經元在其感受野之外的所有權重系數恆為0(但感受野可以在空間移動);且在一個通道內,所有神經元的權重系數相同。
『伍』 卷積神經網路主要做什麼用的
卷積網路的特點主要是卷積核參數共享,池化操作。
參數共享的話的話是因為像圖片等結構化的數據在不同的區域可能會存在相同的特徵,那麼就可以把卷積核作為detector,每一層detect不同的特徵,但是同層的核是在圖片的不同地方找相同的特徵。然後把底層的特徵組合傳給後層,再在後層對特徵整合(一般深度網路是說不清楚後面的網路層得到了什麼特徵的)。
而池化主要是因為在某些任務中降采樣並不會影響結果。所以可以大大減少參數量,另外,池化後在之前同樣大小的區域就可以包含更多的信息了。
綜上,所有有這種特徵的數據都可以用卷積網路來處理。有卷積做視頻的,有卷積做文本處理的(當然這兩者由於是序列信號,天然更適合用lstm處理)
另外,卷積網路只是個工具,看你怎麼使用它,有必要的話你可以隨意組合池化和卷積的順序,可以改變網路結構來達到自己所需目的的,不必太被既定框架束縛。
『陸』 CNN(卷積神經網路)是什麼
在數字圖像處理的時候我們用卷積來濾波是因為我們用的卷積模版在頻域上確實是高通低通帶通等等物理意義上的濾波器。然而在神經網路中,模版的參數是訓練出來的,我認為是純數學意義的東西,很難理解為在頻域上還有什麼意義,所以我不認為神經網路里的卷積有濾波的作用。接著談一下個人的理解。首先不管是不是卷積神經網路,只要是神經網路,本質上就是在用一層層簡單的函數(不管是sigmoid還是Relu)來擬合一個極其復雜的函數,而擬合的過程就是通過一次次back propagation來調參從而使代價函數最小。
『柒』 什麼是卷積神經網路為什麼它們很重要
卷積神經網路(Convolutional Neural Network,CNN)是一種前饋神經網路,它的人工神經元可以響應一部分覆蓋范圍內的周圍單元,對於大型圖像處理有出色表現。[1]它包括卷積層(alternating convolutional layer)和池層(pooling layer)。
卷積神經網路是近年發展起來,並引起廣泛重視的一種高效識別方法。20世紀60年代,Hubel和Wiesel在研究貓腦皮層中用於局部敏感和方向選擇的神經元時發現其獨特的網路結構可以有效地降低反饋神經網路的復雜性,繼而提出了卷積神經網路(Convolutional Neural Networks-簡稱CNN)。現在,CNN已經成為眾多科學領域的研究熱點之一,特別是在模式分類領域,由於該網路避免了對圖像的復雜前期預處理,可以直接輸入原始圖像,因而得到了更為廣泛的應用。 K.Fukushima在1980年提出的新識別機是卷積神經網路的第一個實現網路。隨後,更多的科研工作者對該網路進行了改進。其中,具有代表性的研究成果是Alexander和Taylor提出的「改進認知機」,該方法綜合了各種改進方法的優點並避免了耗時的誤差反向傳播。