導航:首頁 > 網路問題 > 神經網路有什麼用

神經網路有什麼用

發布時間:2022-06-12 06:26:40

Ⅰ 神經網路計算機有哪些用途

許多新型的電子計算機不僅擁有高速的計算功能,而且還能模擬人腦的某些思維活動,就是說,擁有某些智能化的功能。然而,如果嚴格地來鑒定一下,它們離真正的人腦思維功能實在差得太遠了,而且有許多本質的差異。主要表現在人腦擁有高度的自我學習和聯想創造的能力,以及更為高級的尋找最優方案和各種理性的、情感的功能。

目前一種稱之為神經網路計算機的新型電腦已經製造出來了。

它能像人腦那樣進行判斷和預測。它不需要輸入程序,可以直觀地作出答案,也就是說它「看」到什麼就能自行作出反應。它能同時接收幾種信號並進行處理,而不像目前已有的計算機那樣一次只能輸入一個信號。

譬如,它能區別出一個簽名的真偽。它不是憑簽名的圖形是否相像來判斷的,而是根據本人在簽名時筆尖上的壓力隨時間的變化以及移動速度來判斷的。神經網路計算機目前主要的用途是識別各種極細微的變化和趨熱,並發出信號。已經有人用它來控制熱核聚變反應,監督機器的運行,甚至用來挑選蘋果和預測股市行情。

Ⅱ 神經網路主要用於什麼問題的求解

神經網路的研究可以分為理論研究和應用研究兩大方面。
理論研究可分為以下兩類:
1、利用神經生理與認知科學研究人類思維以及智能機理。
2、利用神經基礎理論的研究成果,用數理方法探索功能更加完善、性能更加優越的神經網路模型,深入研究網路演算法和性能,如:穩定性、收斂性、容錯性、魯棒性等;開發新的網路數理理論,如:神經網路動力學、非線性神經場等。
應用研究可分為以下兩類:
1、神經網路的軟體模擬和硬體實現的研究。
2、神經網路在各個領域中應用的研究。這些領域主要包括:
模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。
http://ke..com/view/5348.htm?fr=ala0_1

Ⅲ 人工神經網路的作用

人工神經網路(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智慧領域興起的研究熱點。它從信息處理角度對人腦神經元網路進行抽象, 建立某種簡單模型,按不同的連接方式組成不同的網路。在工程與學術界也常直接簡稱為神經網路或類神經網路。神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。

最近十多年來,人工神經網路的研究工作不斷深入,已經取得了很大的進展,其在模式識別、智能機器人、自動控制、預測估計、生物、醫學、經濟等領域已成功地解決了許多現代計算機難以解決的實際問題,表現出了良好的智能特性。

中文名
人工神經網路
外文名
artificial neural network
別稱
ANN
應用學科
人工智慧
適用領域范圍
模式分類
精品薦讀

「蠢萌」的神經網路
作者:牛油果進化論
快速
導航
基本特徵

發展歷史

網路模型

學習類型

分析方法

特點優點

研究方向

發展趨勢

應用分析
神經元
如圖所示
a1~an為輸入向量的各個分量
w1~wn為神經元各個突觸的權值
b為偏置
f為傳遞函數,通常為非線性函數。以下默認為hardlim()
t為神經元輸出
數學表示 t=f(WA'+b)
W為權向量
A為輸入向量,A'為A向量的轉置
b為偏置
f為傳遞函數
可見,一個神經元的功能是求得輸入向量與權向量的內積後,經一個非線性傳遞函數得到一個標量結果。
單個神經元的作用:把一個n維向量空間用一個超平面分割成兩部分(稱之為判斷邊界),給定一個輸入向量,神經元可以判斷出這個向量位於超平面的哪一邊。
該超平面的方程: Wp+b=0
W權向量
b偏置
p超平面上的向量
基本特徵
人工神經網路是由大量處理單元互聯組成的非線性、自適應信息處理系統。它是在現代神經科學研究成果的基礎上提出的,試圖通過模擬大腦神經網路處理、記憶信息的方式進行信息處理。
人工神經網路具有四個基本特徵:
(1)非線性 非線性關系是自然界的普遍特性。大腦的智慧就是一種非線性現象。人工神經元處於激活或抑制二種不同的狀態,這種行為在數學上表現為一種非線性關系。具有閾值的神經元構成的網路具有更好的性能,可以提高容錯性和存儲容量。
人工神經網路
(2)非局限性 一個神經網路通常由多個神經元廣泛連接而成。一個系統的整體行為不僅取決於單個神經元的特徵,而且可能主要由單元之間的相互作用、相互連接所決定。通過單元之間的大量連接模擬大腦的非局限性。聯想記憶是非局限性的典型例子。
(3)非常定性 人工神經網路具有自適應、自組織、自學習能力。神經網路不但處理的信息可以有各種變化,而且在處理信息的同時,非線性動力系統本身也在不斷變化。經常採用迭代過程描寫動力系統的演化過程。
(4)非凸性 一個系統的演化方向,在一定條件下將取決於某個特定的狀態函數。例如能量函數,它的極值相應於系統比較穩定的狀態。非凸性是指這種函數有多個極值,故系統具有多個較穩定的平衡態,這將導致系統演化的多樣性

Ⅳ 神經網路演算法是用來干什麼的

神經網路演算法是由多個神經元組成的演算法網路。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生的想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:
1、信息是通過神經元上的興奮模式分布儲在網路上。
2、信息處理是通過神經元之間同時相互作用的動態過程來完成的。
思維學普遍認為,人類大腦的思維分為抽象(邏輯)思維、形象(直觀)思維和靈感(頓悟)思維三種基本方式。

Ⅳ 什麼是神經網路,舉例說明神經網路的應用

我想這可能是你想要的神經網路吧!

什麼是神經網路:
人工神經網路(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。

神經網路的應用:

應用
在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人、復雜系統控制等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。

神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:
生物原型
從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
建立模型
根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
演算法
在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。

Ⅵ 神經網路能幹什麼

神經網路利用現有的數據找出輸入與輸出之間得權值關系(近似),然後利用這樣的權值關系進行模擬,例如輸入一組數據模擬出輸出結果,當然你的輸入要和訓練時採用的數據集在一個范疇之內。
例如預報天氣:
溫度 濕度 氣壓等作為輸入 天氣情況作為輸出

利用歷史得輸入輸出關系訓練出神經網路,然後利用這樣的神經網路輸入今天的溫度 濕度 氣壓等 得出即將得天氣情況

當然這樣的例子不夠精確,但是神經網路得典型應用了。

Ⅶ python神經網路編程有什麼用

預測器
神經網路和計算機一樣,對於輸入和輸出都做了一些處理,當我們不知道這些是什麼具體處理的時候,可以使用模型來估計,模型中最重要的就是其中的參數。
對於以前所學的知識都是求出特定的參數,而在這里是使用誤差值的大小去多次指導參數的調整,這就是迭代。
誤差值=真實值-計算值
分類器
預測器是轉換輸入和輸出之間的關系,分類器是將兩類事物劃分開,只是預測器的目的是找到輸出在直線上,分類器是找到輸出分為兩類各在直線的上下方。但其實都是找到一個合適的斜率(只考慮簡單情況下)
分類器中的誤差值E=期望的正確值-基於A的猜測值得到的計算值$ E=t-y \quad E=(ΔA)x $這就是使用誤差值E得到ΔA
ΔA=E/x
,再將ΔA作為調整分界線斜率A的量
但是這樣會存在一個問題,那就是最終改進的直線會與最後一個訓練樣本十分匹配,近視可以認識忽略了之前的訓練樣本,所以要採用一個新的方法:採用ΔA幾分之一的一個變化值,這樣既能解決上面的問題,又可以有節制地抑制錯誤和雜訊的影響,該方法如下
ΔA=L(E/x)
此處的L稱之為調節系數(學習率)
使用學習率可以解決以上問題,但是當數據本身不是由單一線性過程支配時,簡單的線性分類器還是不能實現分類,這個時候就要採用多個線性分類器來劃分(這就是神經網路的核心思想)

Ⅷ 不同的人工神經網路模型各有什麼作用

人工神經網路的優點
人工神經網路是嶄新且令人興奮的研究領域,它有很大的發展潛力,但也同時遭受到一些尚未克服的困難。其優點可列舉如
1.可處理雜訊:一個人工神經網路補訓練完成後,即便輸入的數據中有部分遺失,它仍然有能力辨認樣本。

2.不易損壞:因為人工神經網路以分布式的方法來表示數據,所以當某些單元損壞時,它依然可以正常地工作

3.可以平行處理。
4.可以學習新的觀念。
5.為智能機器提供了一個較合理的模式。
6.已經被成功地運用在某些以一般傳統方法很難解決的問題上,如某些視覺問題。
7.有希望實現聯合內存。
8.它提供了一個工具,來模擬並探討人腦的功能

Ⅸ 神經網路原理及應用

神經網路原理及應用
1. 什麼是神經網路?
神經網路是一種模擬動物神經網路行為特徵,進行分布式並行信息處理的演算法。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
人類的神經網路

2. 神經網路基礎知識
構成:大量簡單的基礎元件——神經元相互連接
工作原理:模擬生物的神經處理信息的方式
功能:進行信息的並行處理和非線性轉化
特點:比較輕松地實現非線性映射過程,具有大規模的計算能力
神經網路的本質:

神經網路的本質就是利用計算機語言模擬人類大腦做決定的過程。
3. 生物神經元結構

4. 神經元結構模型

xj為輸入信號,θi為閾值,wij表示與神經元連接的權值,yi表示輸出值
判斷xjwij是否大於閾值θi
5. 什麼是閾值?
臨界值。
神經網路是模仿大腦的神經元,當外界刺激達到一定的閾值時,神經元才會受刺激,影響下一個神經元。

6. 幾種代表性的網路模型
單層前向神經網路——線性網路
階躍網路
多層前向神經網路(反推學習規則即BP神經網路)
Elman網路、Hopfield網路、雙向聯想記憶網路、自組織競爭網路等等
7. 神經網路能幹什麼?
運用這些網路模型可實現函數逼近、數據聚類、模式分類、優化計算等功能。因此,神經網路廣泛應用於人工智慧、自動控制、機器人、統計學等領域的信息處理中。雖然神經網路的應用很廣,但是在具體的使用過程中到底應當選擇哪種網路結構比較合適是值得考慮的。這就需要我們對各種神經網路結構有一個較全面的認識。
8. 神經網路應用

閱讀全文

與神經網路有什麼用相關的資料

熱點內容
網路通上不了網是路由器壞了嗎 瀏覽:928
網路安全培訓內容範文 瀏覽:77
電信連接網路設置 瀏覽:133
為什麼網路無法連接到ie 瀏覽:501
當貝和創舟網路電視盒哪個好 瀏覽:47
wan鏈路上應用哪個網路 瀏覽:675
網路專線租賃屬於哪個行業 瀏覽:985
網路安全檢測方案 瀏覽:466
網路安全法講座觀後感 瀏覽:565
網路公鏈什麼意思 瀏覽:38
移動網路晚上網路太差 瀏覽:949
一九年有哪些網路游戲 瀏覽:285
所有無線網路都是感嘆號 瀏覽:222
e家寬網路續費後如何開通 瀏覽:541
網路營銷方法和應用 瀏覽:692
電腦網路測試儀正負極 瀏覽:488
銀行的網路功能有哪些 瀏覽:454
網路設備無線 瀏覽:26
關閉電視網路連接有線電視機頂盒 瀏覽:576
網路專線哪個公司好 瀏覽:221

友情鏈接