導航:首頁 > 網路問題 > 人工神經網路不同結果怎麼選

人工神經網路不同結果怎麼選

發布時間:2025-07-17 20:33:06

❶ 人工神經網路評價法

人工神經元是人工神經網路的基本處理單元,而人工智慧的一個重要組成部分又是人工神經網路。人工神經網路是模擬生物神經元系統的數學模型,接受信息主要是通過神經元來進行的。首先,人工神經元利用連接強度將產生的信號擴大;然後,接收到所有與之相連的神經元輸出的加權累積;最後,將神經元與加權總和一一比較,當比閾值大時,則激活人工神經元,信號被輸送至與它連接的上一層的神經元,反之則不行。

人工神經網路的一個重要模型就是反向傳播模型(Back-Propagation Model)(簡稱BP模型)。對於一個擁有n個輸入節點、m個輸出節點的反向傳播網路,可將輸入到輸出的關系看作n維空間到m維空間的映射。由於網路中含有大量非線性節點,所以可具有高度非線性。

(一)神經網路評價法的步驟

利用神經網路對復墾潛力進行評價的目的就是對某個指標的輸入產生一個預期的評價結果,在此過程中需要對網路的連接弧權值進行不斷的調整。

(1)初始化所有連接弧的權值。為了保證網路不會出現飽和及反常的情況,一般將其設置為較小的隨機數。

(2)在網路中輸入一組訓練數據,並對網路的輸出值進行計算。

(3)對期望值與輸出值之間的偏差進行計算,再從輸出層逆向計算到第一隱含層,調整各條弧的權值,使其往減少該偏差的方向發展。

(4)重復以上幾個步驟,對訓練集中的各組訓練數據反復計算,直至二者的偏差達到能夠被認可的程度為止。

(二)人工神經網路模型的建立

(1)確定輸入層個數。根據評價對象的實際情況,輸入層的個數就是所選擇的評價指標數。

(2)確定隱含層數。通常最為理想的神經網路只具有一個隱含層,輸入的信號能夠被隱含節點分離,然後組合成新的向量,其運算快速,可讓復雜的事物簡單化,減少不必要的麻煩。

(3)確定隱含層節點數。按照經驗公式:

災害損毀土地復墾

式中:j——隱含層的個數;

n——輸入層的個數;

m——輸出層的個數。

人工神經網路模型結構如圖5-2。

圖5-2人工神經網路結構圖(據周麗暉,2004)

(三)人工神經網路的計算

輸入被評價對象的指標信息(X1,X2,X3,…,Xn),計算實際輸出值Yj

災害損毀土地復墾

比較已知輸出與計算輸出,修改K層節點的權值和閾值。

災害損毀土地復墾

式中:wij——K-1層結點j的連接權值和閾值;

η——系數(0<η<1);

Xi——結點i的輸出。

輸出結果:

Cj=yj(1-yj)(dj-yj) (5-21)

式中:yj——結點j的實際輸出值;

dj——結點j的期望輸出值。因為無法對隱含結點的輸出進行比較,可推算出:

災害損毀土地復墾

式中:Xj——結點j的實際輸出值。

它是一個輪番代替的過程,每次的迭代都將W值調整,這樣經過反復更替,直到計算輸出值與期望輸出值的偏差在允許值范圍內才能停止。

利用人工神經網路法對復墾潛力進行評價,實際上就是將土地復墾影響評價因子與復墾潛力之間的映射關系建立起來。只要選擇的網路結構合適,利用人工神經網路函數的逼近性,就能無限接近上述映射關系,所以採用人工神經網路法進行災毀土地復墾潛力評價是適宜的。

(四)人工神經網路方法的優缺點

人工神經網路方法與其他方法相比具有如下優點:

(1)它是利用最優訓練原則進行重復計算,不停地調試神經網路結構,直至得到一個相對穩定的結果。所以,採取此方法進行復墾潛力評價可以消除很多人為主觀因素,保證了復墾潛力評價結果的真實性和客觀性。

(2)得到的評價結果誤差相對較小,通過反復迭代減少系統誤差,可滿足任何精度要求。

(3)動態性好,通過增加參比樣本的數量和隨著時間不斷推移,能夠實現動態追蹤比較和更深層次的學習。

(4)它以非線性函數為基礎,與復雜的非線性動態經濟系統更貼近,能夠更加真實、更為准確地反映出災毀土地復墾潛力,比傳統評價方法更適用。

但是人工神經網路也存在一定的不足:

(1)人工神經網路演算法是採取最優化演算法,通過迭代計算對連接各神經元之間的權值不斷地調整,直到達到全局最優化。但誤差曲面相當復雜,在計算過程中一不小心就會使神經網路陷入局部最小點。

(2)誤差通過輸出層逆向傳播,隱含層越多,逆向傳播偏差在接近輸入層時就越不準確,評價效率在一定程度上也受到影響,收斂速度不及時的情況就容易出現,從而造成個別區域的復墾潛力評價結果出現偏離。

❷ BP人工神經網路

人工神經網路(artificialneuralnetwork,ANN)指由大量與自然神經系統相類似的神經元聯結而成的網路,是用工程技術手段模擬生物網路結構特徵和功能特徵的一類人工系統。神經網路不但具有處理數值數據的一般計算能力,而且還具有處理知識的思維、學習、記憶能力,它採用類似於「黑箱」的方法,通過學習和記憶,找出輸入、輸出變數之間的非線性關系(映射),在執行問題和求解時,將所獲取的數據輸入到已經訓練好的網路,依據網路學到的知識進行網路推理,得出合理的答案與結果。

岩土工程中的許多問題是非線性問題,變數之間的關系十分復雜,很難用確切的數學、力學模型來描述。工程現場實測數據的代表性與測點的位置、范圍和手段有關,有時很難滿足傳統統計方法所要求的統計條件和規律,加之岩土工程信息的復雜性和不確定性,因而運用神經網路方法實現岩土工程問題的求解是合適的。

BP神經網路模型是誤差反向傳播(BackPagation)網路模型的簡稱。它由輸入層、隱含層和輸出層組成。網路的學習過程就是對網路各層節點間連接權逐步修改的過程,這一過程由兩部分組成:正向傳播和反向傳播。正向傳播是輸入模式從輸入層經隱含層處理傳向輸出層;反向傳播是均方誤差信息從輸出層向輸入層傳播,將誤差信號沿原來的連接通路返回,通過修改各層神經元的權值,使得誤差信號最小。

BP神經網路模型在建立及應用過程中,主要存在的不足和建議有以下四個方面:

(1)對於神經網路,數據愈多,網路的訓練效果愈佳,也更能反映實際。但在實際操作中,由於條件的限制很難選取大量的樣本值進行訓練,樣本數量偏少。

(2)BP網路模型其計算速度較慢、無法表達預測量與其相關參數之間親疏關系。

(3)以定量數據為基礎建立模型,若能收集到充分資料,以定性指標(如基坑降水方式、基坑支護模式、施工工況等)和一些易獲取的定量指標作為輸入層,以評價等級作為輸出層,這樣建立的BP網路模型將更准確全面。

(4)BP人工神經網路系統具有非線性、智能的特點。較好地考慮了定性描述和定量計算、精確邏輯分析和非確定性推理等方面,但由於樣本不同,影響要素的權重不同,以及在根據先驗知識和前人的經驗總結對定性參數進行量化處理,必然會影響評價的客觀性和准確性。因此,在實際評價中只有根據不同的基坑施工工況、不同的周邊環境條件,應不同用戶的需求,選擇不同的分析指標,才能滿足復雜工況條件下地質環境評價的要求,取得較好的應用效果。

閱讀全文

與人工神經網路不同結果怎麼選相關的資料

熱點內容
陽江移動網路報裝 瀏覽:872
網路調研平台有哪些 瀏覽:268
視易K70設置網路 瀏覽:673
畫網路圖有什麼軟體免費用 瀏覽:699
手機網路電話那個好 瀏覽:345
平原網路教育有哪些 瀏覽:138
蘋果4S怎麼還原網路 瀏覽:82
哪裡有網路安全大賽 瀏覽:908
博山網路審批軟體方案 瀏覽:24
微信中的網路怎麼使用 瀏覽:921
如何設置路由器限制網路 瀏覽:432
怎麼設置網路劃算 瀏覽:101
電視機在哪裡設置網路 瀏覽:595
視頻聊天時顯示對方網路信號差 瀏覽:928
無線網路打雷要拔掉嗎 瀏覽:654
斐訊路由器如何設置廣電網路 瀏覽:650
全網網路營銷管理系統 瀏覽:824
蘋果突然頻繁搜索網路 瀏覽:591
網路貨運有哪些產品 瀏覽:570
免費網路賬號密碼大全 瀏覽:402

友情鏈接