導航:首頁 > 網路設置 > 神經網路分析數據需要多少組數據

神經網路分析數據需要多少組數據

發布時間:2025-06-30 14:21:31

Ⅰ 200組數據可以訓練神經網路嗎

不行
神經網路的數據需要1000個以上,其中訓練樣本至少700以上,驗證樣本至少300以上。

Ⅱ BP神經網路的訓練集需要大樣本嗎一般樣本個數為多少

BP神經網路的訓練集需要大樣本嗎?一般樣本個數為多少?
BP神經網路樣本數有什麼影響
學習神經網路這段時間,有一個疑問,BP神經網路中訓練的次數指的網路的迭代次數,如果有a個樣本,每個樣本訓練次數n,則網路一共迭代an次,在n>>a 情況下 , 網路在不停的調整權值,減小誤差,跟樣本數似乎關系不大。而且,a大了的話訓練時間必然會變長。
換一種說法,將你的數據集看成一個固定值, 那麼樣本集與測試集 也可以按照某種規格確定下來如7:3 所以如何看待 樣本集的多少與訓練結果呢? 或者說怎麼使你的網路更加穩定,更加符合你的所需 。

我嘗試從之前的一個例子中看下區別

如何用70行Java代碼實現深度神經網路演算法

作者其實是實現了一個BP神經網路 ,不多說,看最後的例子

一個運用神經網路的例子
最後我們找個簡單例子來看看神經網路神奇的效果。為了方便觀察數據分布,我們選用一個二維坐標的數據,下面共有4個數據,方塊代表數據的類型為1,三角代表數據的類型為0,可以看到屬於方塊類型的數據有(1,2)和(2,1),屬於三角類型的數據有(1,1),(2,2),現在問題是需要在平面上將4個數據分成1和0兩類,並以此來預測新的數據的類型。


圖片描述

我們可以運用邏輯回歸演算法來解決上面的分類問題,但是邏輯回歸得到一個線性的直線做為分界線,可以看到上面的紅線無論怎麼擺放,總是有一個樣本被錯誤地劃分到不同類型中,所以對於上面的數據,僅僅一條直線不能很正確地劃分他們的分類,如果我們運用神經網路演算法,可以得到下圖的分類效果,相當於多條直線求並集來劃分空間,這樣准確性更高。

圖片描述

簡單粗暴,用作者的代碼運行後 訓練5000次 。根據訓練結果來預測一條新數據的分類(3,1)



預測值 (3,1)的結果跟(1,2)(2,1)屬於一類 屬於正方形

這時如果我們去掉 2個樣本,則樣本輸入變成如下

//設置樣本數據,對應上面的4個二維坐標數據
double[][] data = new double[][]{{1,2},{2,2}};
//設置目標數據,對應4個坐標數據的分類
double[][] target = new double[][]{{1,0},{0,1}};
1
2
3
4
1
2
3
4




則(3,1)結果變成了三角形,

如果你選前兩個點 你會發現直接一條中間線就可以區分 這時候的你的結果跟之前4個點時有區別 so 你得增加樣本 直到這些樣本按照你所想要的方式分類 ,所以樣本的多少 重要性體現在,樣本得能反映所有的特徵值(也就是輸入值) ,樣本多少或者特徵(本例子指點的位置特徵)決定的你的網路的訓練結果,!!!這是 我們反推出來的結果 。這里距離深度學習好像近了一步。

另外,這個70行代碼的神經網路沒有保存你訓練的網路 ,所以你每次運行都是重新訓練的網路。其實,在你訓練過後 權值已經確定了下來,我們確定網路也就是根據權值,so只要把訓練後的權值保存下來,將需要分類的數據按照這種權值帶入網路,即可得到輸出值,也就是一旦網路確定, 權值也就確定,一個輸入對應一個固定的輸出,不會再次改變!個人見解。

最後附上作者的源碼,作者的文章見開頭鏈接
下面的實現程序BpDeep.java可以直接拿去使用,

import java.util.Random;
public class BpDeep{
public double[][] layer;//神經網路各層節點
public double[][] layerErr;//神經網路各節點誤差
public double[][][] layer_weight;//各層節點權重
public double[][][] layer_weight_delta;//各層節點權重動量
public double mobp;//動量系數
public double rate;//學習系數

public BpDeep(int[] layernum, double rate, double mobp){
this.mobp = mobp;
this.rate = rate;
layer = new double[layernum.length][];
layerErr = new double[layernum.length][];
layer_weight = new double[layernum.length][][];
layer_weight_delta = new double[layernum.length][][];
Random random = new Random();
for(int l=0;l<layernum.length;l++){
layer[l]=new double[layernum[l]];
layerErr[l]=new double[layernum[l]];
if(l+1<layernum.length){
layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];
layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];
for(int j=0;j<layernum[l]+1;j++)
for(int i=0;i<layernum[l+1];i++)
layer_weight[l][j][i]=random.nextDouble();//隨機初始化權重
}
}
}
//逐層向前計算輸出
public double[] computeOut(double[] in){
for(int l=1;l<layer.length;l++){
for(int j=0;j<layer[l].length;j++){
double z=layer_weight[l-1][layer[l-1].length][j];
for(int i=0;i<layer[l-1].length;i++){
layer[l-1][i]=l==1?in[i]:layer[l-1][i];
z+=layer_weight[l-1][i][j]*layer[l-1][i];
}
layer[l][j]=1/(1+Math.exp(-z));
}
}
return layer[layer.length-1];
}
//逐層反向計算誤差並修改權重
public void updateWeight(double[] tar){
int l=layer.length-1;
for(int j=0;j<layerErr[l].length;j++)
layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);

while(l-->0){
for(int j=0;j<layerErr[l].length;j++){
double z = 0.0;
for(int i=0;i<layerErr[l+1].length;i++){
z=z+l>0?layerErr[l+1][i]*layer_weight[l][j][i]:0;
layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隱含層動量調整
layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隱含層權重調整
if(j==layerErr[l].length-1){
layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距動量調整
layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距權重調整
}
}
layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//記錄誤差
}
}
}

public void train(double[] in, double[] tar){
double[] out = computeOut(in);
updateWeight(tar);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
下面是這個測試程序BpDeepTest.java的源碼:

import java.util.Arrays;
public class BpDeepTest{
public static void main(String[] args){
//初始化神經網路的基本配置
//第一個參數是一個整型數組,表示神經網路的層數和每層節點數,比如{3,10,10,10,10,2}表示輸入層是3個節點,輸出層是2個節點,中間有4層隱含層,每層10個節點
//第二個參數是學習步長,第三個參數是動量系數
BpDeep bp = new BpDeep(new int[]{2,10,2}, 0.15, 0.8);

//設置樣本數據,對應上面的4個二維坐標數據
double[][] data = new double[][]{{1,2},{2,2},{1,1},{2,1}};
//設置目標數據,對應4個坐標數據的分類
double[][] target = new double[][]{{1,0},{0,1},{0,1},{1,0}};

//迭代訓練5000次
for(int n=0;n<5000;n++)
for(int i=0;i<data.length;i++)
bp.train(data[i], target[i]);

//根據訓練結果來檢驗樣本數據
for(int j=0;j<data.length;j++){
double[] result = bp.computeOut(data[j]);
System.out.println(Arrays.toString(data[j])+":"+Arrays.toString(result));
}

//根據訓練結果來預測一條新數據的分類
double[] x = new double[]{3,1};
double[] result = bp.computeOut(x);
System.out.println(Arrays.toString(x)+":"+Arrays.toString(result));
}
}

Ⅲ 20個數據可以訓練神經網路嗎

可以的。神經網路用訓練數據訓練神經網路,20個數據是可以做的,但是誤差非常大,如果忽略誤差,是可以做的。神經網路是一種計算模型,由大量的節點(或神經元)直接相互關聯而構成。

Ⅳ 神經網路優缺點,

優點:

(1)具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。

自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。

(2)具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。

(3)具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。

缺點:

(1)最嚴重的問題是沒能力來解釋自己的推理過程和推理依據。

(2)不能向用戶提出必要的詢問,而且當數據不充分的時候,神經網路就無法進行工作。

(3)把一切問題的特徵都變為數字,把一切推理都變為數值計算,其結果勢必是丟失信息。

(4)理論和學習演算法還有待於進一步完善和提高。

(4)神經網路分析數據需要多少組數據擴展閱讀:

神經網路發展趨勢

人工神經網路特有的非線性適應性信息處理能力,克服了傳統人工智慧方法對於直覺,如模式、語音識別、非結構化信息處理方面的缺陷,使之在神經專家系統、模式識別、智能控制、組合優化、預測等領域得到成功應用。

人工神經網路與其它傳統方法相結合,將推動人工智慧和信息處理技術不斷發展。近年來,人工神經網路正向模擬人類認知的道路上更加深入發展,與模糊系統、遺傳演算法、進化機制等結合,形成計算智能,成為人工智慧的一個重要方向,將在實際應用中得到發展。

將信息幾何應用於人工神經網路的研究,為人工神經網路的理論研究開辟了新的途徑。神經計算機的研究發展很快,已有產品進入市場。光電結合的神經計算機為人工神經網路的發展提供了良好條件。

神經網路在很多領域已得到了很好的應用,但其需要研究的方面還很多。其中,具有分布存儲、並行處理、自學習、自組織以及非線性映射等優點的神經網路與其他技術的結合以及由此而來的混合方法和混合系統,已經成為一大研究熱點。

由於其他方法也有它們各自的優點,所以將神經網路與其他方法相結合,取長補短,繼而可以獲得更好的應用效果。目前這方面工作有神經網路與模糊邏輯、專家系統、遺傳演算法、小波分析、混沌、粗集理論、分形理論、證據理論和灰色系統等的融合。

參考資料:網路-人工神經網路

Ⅳ matlab BP神經網路人口預測,用32個數據每4個為一組,前三個為輸入,進行滾動預測

你最好用優化演算法優化一下,結果肯定會更好,我做過一些這方面的研灶鏈緩究,我給你個簡答的遺傳演算法優化BP網路的列子,你可以套用一下,就出來了,同樣是預測:
神經網路遺傳演算法函數極值尋優

%% 清空環境變數
clc
clear

tic
%% 訓練數據預測數據提取及歸一化
%下載輸隱模入輸出數據
load data1 input output

%從1到2000間隨機排序
k=rand(1,4000);
[m,n]=sort(k);

%找出訓練數據和預測數據
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';

%選連樣本輸入輸出數據歸一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);

%% BP網路訓練
% %初始化網路結構
net=newff(inputn,outputn,5);

net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.0000004;

%網路訓練
net=train(net,inputn,outputn);

%% BP網路預測
%預測數據歸一化
inputn_test=mapminmax('apply',input_test,inputps);

%網路預測輸出
an=sim(net,inputn_test);

%網路輸出反歸一化
BPoutput=mapminmax('reverse',an,outputps);

%% 結果分析

figure(1)
plot(BPoutput,':og')
hold on
plot(output_test,'-*'喚鉛);
legend('預測輸出','期望輸出','fontsize',12)
title('BP網路預測輸出','fontsize',12)
xlabel('樣本','fontsize',12)
ylabel('輸出','fontsize',12)

%預測誤差
error=BPoutput-output_test;

figure(2)
plot(error,'-*')
title('神經網路預測誤差')

figure(3)
plot((output_test-BPoutput)./BPoutput,'-*');
title('神經網路預測誤差百分比')

errorsum=sum(abs(error))

閱讀全文

與神經網路分析數據需要多少組數據相關的資料

熱點內容
網路用語弱點是什麼意思 瀏覽:228
路由器控制網路方法 瀏覽:74
珠江台在網路平台哪個頻道 瀏覽:720
電腦網路良好無法使用釘釘 瀏覽:454
五級路由器怎麼連接的到網路里 瀏覽:483
上海網路營銷黑馬網路 瀏覽:80
普陀網路營銷有效嗎 瀏覽:196
網路免費宣傳平台哪個好 瀏覽:570
電信網路營銷方法 瀏覽:693
瑞星網路版密碼多少 瀏覽:137
連接不上需認證的網路 瀏覽:65
怎麼把兩台沒網路的電腦連接起來 瀏覽:36
平板重新設置無線網路參數 瀏覽:580
韓泰是什麼意思網路語 瀏覽:768
如何增加網路對講機信號 瀏覽:719
xp系統無線網路沒有了 瀏覽:216
衢州網路教學怎麼樣 瀏覽:538
網路沉迷事件有哪些 瀏覽:674
陽泉市移動網路好還是聯通網路好 瀏覽:39
網路消費者購買力西部省份佔多少 瀏覽:931

友情鏈接