⑴ 無線感測器網路的重要的性能指標有哪些
採用低量程晶元真空絕壓封裝,產品具有高的過載能力。晶元採用真空充注硅油隔離,不銹鋼薄膜過渡傳遞壓力,具有優良的介質兼容性,適用於對316L不銹鋼不腐蝕的絕大多數氣液體介質真空壓力的測量。真空度傳染其應用於各種工業環境的低真空測量與控制4。
電容式物位
電容式物位感測器適用於工業企業在生產過程中進行測量和控制生產過程,主要用作類導電與
⑵ 無線感測網路的問題
涉及的內容是挺多的,
1.硬體方面的(目前處除了軍用,或其他一些特定應用外,我們國家很多感測器晶元用的還都是國外的,沒有過硬的技術啊)。
2.無線感測器網路協議研究。根據感測器網路自身的特點,結合應用,量身打造更合適的通信協議。
3.軟體方面的。目前有系統級別的Tiny OS,編程語言nesC,針對特定應用編寫輕量級程序。
4.無線感測器數據管理層面。可以研究網路數據流挖掘之類的。
哪個最有前景?1最有發展空間,但難度大。3是基礎,最容易上手,想有突破很難。2和4,自己想吧。
以上都是個人粗淺見解,做個參考。
⑶ 什麼是無線感測器網路
無線感測器是有接收器和發射器。接收器上可以接多個感測器的。輸送都是兩三百米、頻率是2.4GHz。如果需要傳輸更遠的距離的話就需要跳頻了。這樣整個形式就是無線感測器的網路了。
⑷ 無線網路傳輸速率是什麼
路由器的M是Mbps的簡稱,比特率是用來描述數據傳輸速度快慢的一個單位,比特率越大,數據流速越快。理論上150Mbps的網速,每秒鍾的傳輸速度就是18.75MB/S。300Mbps的網速,每秒鍾的傳輸速度就是37.5MB/S,那麼這些是怎麼算出來的呢?
註:數據的流速是變動的,比特率只是一個平均參考值。1M的網速,理論上是128KB/S,但實際上只有120左右不到,因為數據在傳輸過程中會有一定的損耗。另外,這個比特率和MP3
或者
視頻的比特率是一樣的,只是數量級不同而已,常見的MP3文件比特率在320kbps左右。
把Mbps拆開來就是:M是數量級,即兆。兆代表百萬級,在數學中,1兆就是一百萬。但是在計算機領域,M代表1024X1024。
b是bit的簡稱,即比特。這個和我們經常說的MB中的B是不同的。MB是兆位元組的意思,用來描述文件大小的一個單位,一個英文字母就是1位元組,1個漢字就是2位元組。
p是per,即
「每」
。因此,Mbps翻譯成中文就是
兆比特每秒。/這個符號和p是等效的。
Mbps(比特率)轉換成我們常見的
MB/S
,只需要將前者除以8即可。
M是一樣的,8個b(bit,比特)=1個B(Byte,位元組),P和/
是一樣的。S就是秒的意思。
150Mbps
÷
8
=
18.75MB/S,300Mbps÷8=37.5MB/S。就是這么算出來的。
也就是說路由器標注的150M表示路由器最多隻能支持到150M的帶寬,就算網速是200M的,經過路由器出來也只有150M,300M的同理
提交回答
⑸ 無線感測器網路中的部署問題,200分!!追加!!
無線感測器網路(wirelesssensornetwork,WSN)是綜合了感測器技術、嵌入式計算機技術、分布式信息處理技術和無線通信技術,能夠協作地實時監測、感知和採集網路分布區域內的各種環境或監測對象的信息,並對這些數據進行處理,獲得詳盡而准確的信息。傳送到需要這些信息的用戶。它是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信方式形成一個多跳的自組織的網路系統。感測器、感知對象和觀察者構成了感測器網路的三要素。
無線感測器網路作為當今信息領域新的研究熱點,涉及到許多學科交叉的研究領域,要解決的關鍵技術很多,比如:網路拓撲控制、網路協議、網路安全、時間同步、定位技術、數據融合、數據管理、無線通信技術等方面,同時還要考慮感測器的電源和節能等問題。
所謂部署問題,就是在一定的區域內,通過適當的策略布置感測器節點以滿足某種特定的需求。優化節點數目和節點分布形式,高效利用有限的感測器網路資源,最大程度地降低網路能耗,均是節點部署時應注意的問題。
目前的研究主要集中在網路的覆蓋問題、連通問題和能耗問題3個方面。
基於節點部署方式的覆蓋:1)確定性覆蓋2)自組織覆蓋
基於網格的覆蓋:1)方形網格2)菱形網格
被監測目標狀態的覆蓋:1)靜態目標覆蓋2)動態目標覆蓋
連通問題可描述為在感測器節點能量有限,感知、通信和計算能力受限的情況下,採用一定的策略(通常設計有效的演算法)在目標區域中部署感測器節點,使得網路中的各個活躍節點之間能夠通過一跳或多跳方式進行通信。連通問題涉及到節點通信距離和通信范圍的概念。連通問題分為兩類:純連通與路由連通。
覆蓋中的節能對於覆蓋問題,通常採用節點集輪換機制來調度節點的活躍/休眠時間。連通中的節能針對連通問題,也可採用節點集輪換機制與調整節點通信距離的方法。而文獻中涉及最多的主要是從節約網路能量和平衡節點剩餘能量的角度進行路由協議的研究。
⑹ 無線感測器網路
無線感測器網路(wirelesssensornetwork,WSN)是綜合了感測器技術、嵌入式計算機技術、分布式信息處理技術和無線通信技術,能夠協作地實時監測、感知和採集網路分布區域內的各種環境或監測對象的信息,並對這些數據進行處理,獲得詳盡而准確的信息。傳送到需要這些信息的用戶。它是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信方式形成一個多跳的自組織的網路系統。感測器、感知對象和觀察者構成了感測器網路的三要素。
無線感測器網路作為當今信息領域新的研究熱點,涉及到許多學科交叉的研究領域,要解決的關鍵技術很多,比如:網路拓撲控制、網路協議、網路安全、時間同步、定位技術、數據融合、數據管理、無線通信技術等方面,同時還要考慮感測器的電源和節能等問題。
所謂部署問題,就是在一定的區域內,通過適當的策略布置感測器節點以滿足某種特定的需求。優化節點數目和節點分布形式,高效利用有限的感測器網路資源,最大程度地降低網路能耗,均是節點部署時應注意的問題。
目前的研究主要集中在網路的覆蓋問題、連通問題和能耗問題3個方面。
基於節點部署方式的覆蓋:1)確定性覆蓋2)自組織覆蓋
基於網格的覆蓋:1)方形網格2)菱形網格
被監測目標狀態的覆蓋:1)靜態目標覆蓋2)動態目標覆蓋
連通問題可描述為在感測器節點能量有限,感知、通信和計算能力受限的情況下,採用一定的策略(通常設計有效的演算法)在目標區域中部署感測器節點,使得網路中的各個活躍節點之間能夠通過一跳或多跳方式進行通信。連通問題涉及到節點通信距離和通信范圍的概念。連通問題分為兩類:純連通與路由連通。
覆蓋中的節能對於覆蓋問題,通常採用節點集輪換機制來調度節點的活躍/休眠時間。連通中的節能針對連通問題,也可採用節點集輪換機制與調整節點通信距離的方法。而文獻中涉及最多的主要是從節約網路能量和平衡節點剩餘能量的角度進行路由協議的研究。
⑺ 什麼是無線感測技術
早在上世紀70年代,就出現了將傳統感測器採用點對點傳輸、連接感測控制器而構成感測網路雛形,我們把它歸之為第一代感測器網路。隨著相關學科的不斷發展和進步,感測器網路同時還具有了獲取多種信息信號的綜合處理能力,並通過與感測控制的相聯,組成了有信息綜合和處理能力的感測器網路,這是第二代感測器網路。而從上世紀末開始,現場匯流排技術開始應用於感測器網路,人們用其組建智能化感測器網路,大量多功能感測器被運用,並使用無線技術連接,無線感測器網路逐漸形成。
無線感測器網路是新一代的感測器網路,具有非常上世紀70年代,其發展和應用,將會給人類的生活和生產的各個領域帶來深遠影響。
無線感測器網路可以看成是由數據獲取網路、數據頒布網路和控制管理中心三部分組成的。其主要組成部分是集成有感測器、處理單元和通信模塊的節點,各節點通過協議自組成一個分布式網路,再將採集來的數據通過優化後經無線電波傳輸給信息處理中心。
⑻ 無線感測器執行網如何實現區域最優化協作
為了解決測量無線感測器網路可靠性的問題,提出一種可靠性評估模型,此模型綜合考慮了基於容錯的網路抗毀性和基於能效的網路壽命這兩個主要因素。通過確定K-覆蓋和K-連通,可有效評估自然失效和能量約束條件下的網路可靠性,同時可以延長網路壽命並提高網路的魯棒性。實驗結果表明在無線感測器網路中可靠性與感測器密度存在一定關系。通過實現可靠性模型中的最優化目標,滿足了感測器覆蓋率和網路連通率要求,提高了無線感測器網路的安全性能。
無線感測器網路W
SN(w ireless sensor net-w
orks)[1]是由一組稠密布置、隨機撒布的感測器組成的無線自組織網路,以其隨機布置、自組織、適應苛刻環境等優勢,具有在多種場合滿足軍事信息獲取的實時性、准確性、全面性等需求的潛力。然而,在大多數應用環境中對無線感測器網路
⑼ 無線感測器網路的優缺點
一、優點
(1) 數據機密性
數據機密性是重要的網路安全需求,要求所有敏感信息在存儲和傳輸過程中都要保證其機密性,不得向任何非授權用戶泄露信息的內容。
(2)數據完整性
有了機密性保證,攻擊者可能無法獲取信息的真實內容,但接收者並不能保證其收到的數據是正確的,因為惡意的中間節點可以截獲、篡改和干擾信息的傳輸過程。通過數據完整性鑒別,可以確保數據傳輸過程中沒有任何改變。
(3) 數據新鮮性
數據新鮮性問題是強調每次接收的數據都是發送方最新發送的數據,以此杜絕接收重復的信息。保證數據新鮮性的主要目的是防止重放(Replay)攻擊。
二、缺點
根據網路層次的不同,無線感測器網路容易受到的威脅:
(1)物理層:主要的攻擊方法為擁塞攻擊和物理破壞。
(2)鏈路層:主要的攻擊方法為碰撞攻擊、耗盡攻擊和非公平競爭。
(3)網路層:主要的攻擊方法為丟棄和貪婪破壞、方向誤導攻擊、黑洞攻擊和匯聚節點攻擊。
(4)傳輸層:主要的攻擊方法為泛洪攻擊和同步破壞攻擊。
(9)無線感測網路連通率擴展閱讀:
一、相關特點
(1)組建方式自由。
無線網路感測器的組建不受任何外界條件的限制,組建者無論在何時何地,都可以快速地組建起一個功能完善的無線網路感測器網路,組建成功之後的維護管理工作也完全在網路內部進行。
(2)網路拓撲結構的不確定性。
從網路層次的方向來看,無線感測器的網路拓撲結構是變化不定的,例如構成網路拓撲結構的感測器節點可以隨時增加或者減少,網路拓撲結構圖可以隨時被分開或者合並。
(3)控制方式不集中。
雖然無線感測器網路把基站和感測器的節點集中控制了起來,但是各個感測器節點之間的控制方式還是分散式的,路由和主機的功能由網路的終端實現各個主機獨立運行,互不幹涉,因此無線感測器網路的強度很高,很難被破壞。
(4)安全性不高。
無線感測器網路採用無線方式傳遞信息,因此感測器節點在傳遞信息的過程中很容易被外界入侵,從而導致信息的泄露和無線感測器網路的損壞,大部分無線感測器網路的節點都是暴露在外的,這大大降低了無線感測器網路的安全性。
二、組成結構
無線感測器網路主要由三大部分組成,包括節點、感測網路和用戶這3部分。其中,節點一般是通過一定方式將節點覆蓋在一定的范圍,整個范圍按照一定要求能夠滿足監測的范圍。
感測網路是最主要的部分,它是將所有的節點信息通過固定的渠道進行收集,然後對這些節點信息進行一定的分析計算,將分析後的結果匯總到一個基站,最後通過衛星通信傳輸到指定的用戶端,從而實現無線感測的要求。
⑽ 無線感測網路的覆蓋率怎麼計算
這要看你的這個網路是基於什麼技術實現了,每一種技術的網路協議不同,計算起來也不同。比如ZigBee,它的覆蓋率和網路的拓撲結構有關,計算覆蓋率的時候應該考慮其協調器發送功率、路由節點數目/位置、子節點數目/位置等。再比如GPRS,覆蓋范圍和基站天線高度、功率等有關,一般方圓十幾公里沒有問題。