㈠ 異構網路的異構網路的背景介紹
圖1.1展示了移動通信技術的發展歷程,從中我們可以觀察到數據傳輸速率隨著技術的進步而顯著提升,這為用戶提供大數據量多媒體通信服務奠定了基礎。至今,移動通信系統已經發展至第四代。接下來,本文將對這四代移動通信技術進行簡要介紹。
第一代模擬蜂窩系統(1G)始於20世紀80年代,主要應用於大規模民用通信,通過模擬語音調制技術和頻分多址技術(FDMA)提供模擬語音服務,數據傳輸速率約為2.4kbps。代表性的系統包括北美的AMPS、英國TACS和北歐NMT等。然而,受傳輸帶寬限制,第一代系統無法支持長途漫遊,僅限於區域性通信。此外,由於制式繁多且互不兼容,第一代通信系統存在容量有限、保密性較差和通信質量不高等問題,這推動了第二代數字移動通信系統(2G)的發展。
第二代數字移動通信系統實現了從模擬到數字的轉變,並向用戶提供了數字語音服務。該代技術主要包括基於TDMA的全球數字移動通信系統(GSM)和基於CDMA的IS-95系統(如CDMA one)。
第三代移動通信系統(3G)是在第二代移動通信技術日益成熟的基礎上發展起來的,旨在提供高速數據蜂窩移動通信技術。主要3G技術標准包括歐洲的WCDMA、北美的CDMA2000、中國的TD-SCDMA以及國際電信聯盟(ITU)會議通過的WiMAX。第三代移動通信的最高數據傳輸速率可達2Mbps,能夠提供相當高速的數據傳輸服務,如多媒體、視頻和數據等。
長期演進(LTE)項目是3G的演進,採用正交頻分復用(OFDM)和MIMO技術,在20MHz帶寬下提供上行50Mbps和下行100Mbps的峰值速率,也被稱作3.9G移動通信技術。LTE-Advanced作為LTE的升級版,被稱為4G標准,有兩種制式:TDD和FDD。TD-SCDMA可以演進成TDD制式,HSPA+直接進入LTE,而WCDMA可以演進成FDD制式。
第四代移動通信系統(4G)旨在提供更高的帶寬,並確保任何人在任何時間、任何地點以任何方式都能與他人進行通信,用戶無需關心網路傳輸的實現細節。為了實現這一目標,需要將不同的無線通信系統融合在一起,形成異構無線網路(HWNs),為用戶提供無縫切換和服務質量(QoS)保證。因此,下一代移動通信網路將是異構網路。異構網路融合是下一代網路研究的熱點,也是本文的研究重點。
寬頻無線接入技術(BWA)是繼1990年攜帶型無線電話和2000年Wi-Fi(Wireless Fidelity)之後的第三次無線革命,它能在廣域網上提供高速無線互聯網接入或計算機網路接入。幾種重要的寬頻無線接入技術包括WLAN(Wireless Local Area Network)、WiMAX技術和WiBro(Wireless Broadband)等。
表1.1和表1.2分別列出了三種寬頻無線接入技術和三種3G技術的主要參數。比較這兩張表格可以看出BWA與3G技術存在很大差異,例如BWA支持的數據傳輸速率數十兆比特每秒,而3G只有幾兆比特每秒;3G網路的覆蓋范圍大於BWA網路;3G網路支持高速移動的用戶。因此,每個網路都有其優點和局限性。
下一代無線網路是異構網路融合的重要原因在於:基於異構網路融合,可以根據用戶特點(如車載用戶)、業務特點(如實時性要求高)和網路特點為用戶選擇合適的網路,提供更好的QoS。廣域網覆蓋范圍大,但數據傳輸速率低;區域網則相反。在實際應用中,多模終端可以根據自身業務特點和移動性選擇合適的網路接入。與同構網路不同,在異構網路環境下,用戶可以選擇服務代價小且滿足自身需求的網路進行接入。這是由於這些異構網路之間具有互補性,使得網路融合顯得非常重要。
一些組織提出了不同的網路融合標准,包括3GPP(第三代合作夥伴計劃)、MIH(IEEE 802.21媒體獨立切換工作組)和ETSI(歐洲電信標准協會)。無線資源管理(Radio Resource Management,RRM)是異構網路中的一個重要研究課題,其目標是高效利用受限的無線頻譜、傳輸功率以及無線網路基礎設施。RRM技術包括呼叫接入控制(CAC)、水平或垂直切換、負載均衡、信道分配和功率控制等。3GPP提出了一種協同無線資源管理技術(CRRM),通過利用CRRM伺服器對不同接入網路信息進行監測,合理調度異構網路中的無線資源。除了協同無線資源管理演算法外,還有聯合無線資源管理演算法(JRRM)。這些技術實際上都是為異構網路提供統一的管理平台,以達到合理利用無線資源的目的。
網路選擇演算法是無線資源管理中的研究熱點,網路選擇演算法通常可以分為呼叫接入網路選擇演算法和垂直網路切換選擇演算法。在同構網路中,接入和切換主要考慮接收信號的強度,而在異構網路中需要考慮不同接入網路之間的差異,因此需要考慮的因素很多,接收信號的強度只是其中的一個影響因素,其他因素如數據傳輸速率、價格、覆蓋范圍、實時性和用戶的移動性等。這些都是從用戶角度考慮的,如果從網路端考慮,就會涉及到提高系統的吞吐量、降低阻塞率以及均衡負載。因此,網路選擇對於異構網路的融合起到了至關重要的影響。本文接下來部分將主要討論異構網路系統模型、無線資源管理、網路性能優化以及網路選擇演算法。
㈡ 實現異構網路的互聯互通用相同網路好還是中間設備好
登錄
首頁
學習
實踐
活動
工具
TVP
越陌度阡
677 篇文章
關注
計算機網路之網路層-網路互連與網路互連設備
2020-11-26 11:33:48閱讀 4060
1. 異構網路互連
異構網路:主要是指兩個網路的通信技術和運行協議的不同。 例如:WIFI和網線等。
異構網路互連的基本策略:
(1). 協議轉換
採用一類支持異構網路之間協議轉換的網路中間設備嘩胡,來實現 異構網路之間數據分組的轉換與轉發。 例如:交換機或者是多協議路由器。
(2). 構建虛擬互聯網路
在異構網路基礎上構建一個同構的虛擬互聯網路。
2. 路由器
路由器:最典型的網路層設備,具有多個輸入埠和多個輸出埠的專用計算機, 主要任務就是獲取與維護路由信息以及轉發分組。
路由器從功能體系結構角度:
(1). 輸入埠
輸入埠:查找,轉發,到達分組, 緩存排隊功能。
(2). 交換結構
交換結構:完成具體的轉發工作,將輸入埠的IP數據報交換到指定的輸出埠。
主要包括:
A. 基於內存交換 ,性能最低,路由器亂早攔價格最便宜。
B. 基於匯流排交換
C. 基於網路交換,性能最高,路由器價格昂貴。
(3). 輸出埠
輸出埠:緩存排隊,從隊列中取出分組進行數據鏈路層數據幀的封裝,發送。
調度策略:
A. 按先到先服務(FCFS)調度;
B. 按優先順序調度;
C. 按IP數據報的服務類型調度。
(4). 路由處理器
A. 執行命令;
B. 路由協議運睜悉行;
C. 路由計算以及路由表的更新和維護。
㈢ 什麼是異構網路,什麼是同構網路具體的概述
隨著感測器技術、 嵌入式技術、 分布式信息處理技術和無線通信技術的發展, 以大量的具有微處理能力的微型感測器節點組成的無線感測器網路(WSN)逐漸成為研究熱點問題。
與傳統無線通信網路Ad Hoc網路相比, WSN的自組織性、 動態性、 可靠性和以數據為中心等特點, 使其可以應用到人員無法到達的地方, 比如戰場、 沙漠等。 因此, 可以斷定未來無線感測器網路將有更為廣泛的前景。
無線感測器網路
無線感測器網路(Wireless Sensor Networks, WSN)是一種分布式感測網路,由大量的靜止或移動的感測器以自組織和多跳的方式構成的無線網路,以協作地感知、採集、處理和傳輸網路覆蓋地理區域內被感知對象的信息,並最終把這些信息發送給網路的所有者。感測器、感知對象和觀察者構成了無線感測器網路的三個要素。
無線感測器網路所具有的眾多類型的感測器,可探測包括地震、電磁、溫度、濕度、雜訊、光強度、壓力、土壤成分、移動物體的大小、速度和方向等周邊環境中多種多樣的現象。潛在的應用領域可以歸納為: 軍事、航空、防爆、救災、環境、醫療、保健、家居、工業、商業等領域。
與傳統有線網路相比,無線感測器網路技術具有很明顯的優勢特點,主要的要求有: 低能耗、 低成本、 通用性、 網路拓撲、 安全、 實時性、 以數據為中心等。
無線感測器網路系統的典型結構
採用同構網路實現遠程監測的無線感測器網路系統典型結構, 由感測器節點、 匯聚節點、 伺服器端的PC和客戶端的PC四大硬體環節組成, 各組成環節功能如下。
圖1 遠程監測無線感測器網路系統結構框圖
感測器節點
部署在監測區域(A區), 通過自組織方式構成無線網路。 感測器節點監測的數據沿著其它節點逐跳進行無線傳輸, 經過多跳後達到匯聚節點(B區)。
匯聚節點
是一個網路協調器, 負責無線網路的組建, 再將感測器節點無線傳輸進來的信息與數據通過SCI( 串列通信介面)傳送至伺服器端PC。
伺服器端PC
是一個位於B區的管理節點, 也是獨立的Internet網關節點。 在LabVIEW軟體平台上面有兩個軟體: 一是對感測器無線網路進行監測管理的軟體平台VI, 即一個監測感測器無線網路的虛擬儀器VI; 二是Web Server軟體模塊和遠程面板技術(Remote Panel), 可實現感測器無線網路與Internet的連接。
客戶端PC
客戶端PC上無需進行任何軟體設計, 在瀏覽器中就可調用伺服器PC中無線感測器網路監測虛擬儀器的前面板, 實現遠程異地(C區)對感測器無線網路(A區)的監測與管理。
無線感測器網路中的感測器節點
1. 感測器及其調理電路
應根據無線感測器網路所在的地區環境特點來選擇感測器, 以適應環境溫度變化范圍、 尺寸體積等特殊要求。 感測器所配接的調理電路將感測器輸出的變化量轉換成能與A/D轉換器相適配的0~2.5 V或0~5 V的電壓信號。 當處於無電網供電地區時, 感測器及其調理電路都應是低功耗的。
2. 數據採集及A/D轉換器與微處理器系統
感測器節點中的計算機系統是低功耗的單片微處理器系統, 可以適應遠離測試中心、 偏遠地區惡劣環境的工作條件。 如美國德克薩斯州儀器(TI)公司生產的MSP430-F149A超低功耗混合信號處理器(Mixed Signal Processor), 它內部自帶采樣/保持器和12位A/D轉換器, 可對信號進行採集、 轉換以及對全節點系統進行指令控制和數據處理。
3. 射頻模塊
射頻模塊接收外部無線指令並將感測器檢測到的被測參量數據信息無線發送出去, 如TI公司的CC2420無線收發晶元。
㈣ 異構網路的網路選擇演算法的研究
異構網路中無線資源管理的一個重要研究方向就是網路選擇演算法,網路選擇演算法的研究很廣泛,這里給出了幾個典型的無線網路選擇演算法的類別。 預切換可以有效的減少不必要的切換,並為是否需要執行切換做好准備。通常情況下可以通過當前接收信號強度來預測將來接收信號強度的變化趨勢,來判斷是否需要執行切換。
文獻 中利用多項式回歸演算法對接收信號的強度進行預測,這種方法的計算復雜度較大。文獻 中,利用模糊神經網路來對接收信號強度進行預測,模糊神經網路的演算法最大的問題,收斂較慢,而且計算的復雜度高。文獻 中,利用的是最小二乘演算法(LMS)來預測接收的信號強度,通過迭代的方法,能夠達到快收斂,得到較好的預測。還有在文獻 中,直接採用接收信號強度的斜率來預測接收信號強度,用來估計終端在該網路中的生存時間,但是這種方法太簡單,精度不是很高。 在垂直切換的過程中,對於相同的切換場景,通常會出現現在的已出現過的切換條件,對於其垂直切換的結果,可以應用到當前條件下,這樣可以有效避免的重新執行切換決策所帶來的時延。
文獻[33]中,提出利用用戶連接信息(User Connection Profile,UCP)資料庫用來存儲以前的網路選擇事件。在終端需要執行垂直切換時,首先檢查資料庫中是否存在相同的網路選擇記錄,如果存在可以直接接入最合適的網路。在文獻[34]中,提出了將切換到該網路的持續服務時間和距離該網路的最後一次阻塞時間間隔作為歷史信息記錄下來,根據這些信息,選擇是否有必要進行切換。 由於用戶對網路參數的判斷往往是模糊的,而不是確切的概念,所以通常採用模糊邏輯對參數進行定量分析,將其應用到網路選擇中顯得更加合理。模糊系統組成通常有3個部分組成,分別是模糊化、模糊推理和去模糊化。對於去模糊化的方法通常採用中心平均去模糊化,最後得到網路性能的評價值,根據模糊系統所輸出的結果,選擇最適合的網路。
通常情況下,模糊邏輯與神經網路是相互結合起來應用的,通過模糊邏輯系統的推理規則,對神經網路進行訓練,得到訓練好的神經網路。在垂直切換的判決的時候,利用訓練好的神經網路,輸入相應網路的屬性參數,選擇最適合的網路接入。
基於模糊邏輯和神經網路的策略,可以對多種因素(尤其動態因素)進行動態地控制,並做出自適應的決策,可以有效提高網路選擇的合理性,但該策略最大的缺點是,演算法的實現較為復雜,在電池容量和處理能力均受限的移動設備上是不合適的。 在異構網路選擇中,博弈論是一個重要的研究方向。在博弈論的模型中,博弈中的參與者在追求自身利益最大化的同時,保證自身付出的代價盡量小。參與者的這兩種策略可以通過效用函數和代價函數來衡量。因此通過最大化效用函數和最小化代價函數,來追求利益的最大化。
文獻[36]中提出一種基於博弈論的定價策略和網路選擇方案,該方案中服務提供商(Service Providers,SPs)為了提高自己的利潤需要面臨競爭,它是通過用戶間的合作或者非合作博弈來獲得,在實際的異構網路場景下,用戶和服務提供商SPs之間可以利用博弈模型來表示。Dusit Niyato在文獻[37]中,通過競價機制來進行異構網路資源的管理,這里將業務分成兩種類型,一種是基本業務,另一種類似高質量業務,基本業務的價格是固定的,而高質量業務的價格是動態變化的,它是隨著服務提供商的競爭和合作而變化的。因此這里從合作博弈和非合作博弈兩方面來討論定價機制。Dusit Niyato在文獻[38]中基於進化博弈理論,來解決在帶寬受限情況下,用戶如何在重疊區域進行網路選擇。 網路選擇的目標通常是通過合理分配無線資源來最大化系統的吞吐量,或者最小化接入阻塞概率等,這樣就會涉及網路優化問題。
網路選擇演算法往往是一種多目標決策,用戶希望得到好的服務質量、價格便宜的網路、低的電池功率消耗等。對於多目標決策演算法,通常是不可能使得每個目標同時達到最優,通常的有三種做法:其一,把一些目標函數轉化為限制條件,從而減少目標函數數目;其二,將不同的目標函數規范化後,將規范化後的目標函數相加,得到一個目標函數,這樣就可以利用最優化的方法,得到最優問題的解;其三,將兩者結合起來使用。例如文獻[39]中,採用的是讓系統的帶寬受限,最大化網路內的所有用戶的手機使用時間,即將部分目標函數轉化為限制條件。文獻[40]中,採用的是讓用戶的使用的費用受限,最大化用戶的利益和最小化用戶的代價,這里採用的是上面介紹的第三種方法。 基於策略的網路選擇指的是按照預先規定好的策略進行相應的網路操作。在網路選擇中,通常需要考慮網路負荷、終端的移動性和業務特性等因素。如對於車載用戶通常選擇覆蓋范圍大的無線網路,如WCDMA、WiMAX等;對於實時性要求不高的業務,並且非車載用戶通常選擇WLAN接入。這些均是通過策略來進行網路選擇。
文獻[41, 42]提出了基於業務類型的網路選擇演算法,根據用戶的業務類型為用戶選擇合適的網路。文獻[35]提出基於負載均衡的網路選擇演算法,用戶選擇接入或切換到最小負載因子的網路。[43]提出了一種考慮用戶移動性和業務類型的網路選擇演算法。 多屬性判決策略(Multiple Attribute Decision Making,MADM)是目前垂直切換方面研究最多的領域。多屬性判決策略主要分為基於代價函數的方法和其他方法。
基於代價函數的方法
代價函數一般有兩種構造形式,一種是多屬性參數值的線性組合,如(2.1)式所示;另一種是多屬性參數值的權重指數乘積或者是屬性參數值的對數線性組合,如(2.2)式所示。
(2.1)
(2.2)
其中代表規范化的第個網路的第個屬性值,代表第個屬性的權值。對於屬性的規范化,首先對屬性進行分類,分為效益型、成本型等,然後根據不同的類型的,對參數進行歸一化,採用最多的是線性規范化、極差規范化和向量變換法。關於權值的確定可以分為簡單賦權法(Simple Additive Weighting,SAW)、層次分析法(Analytic Hierarchy Process,AHP)、熵權法、基於方差和均值賦權法。
(1) SAW:用戶根據自己的偏好,確定每個屬性的重要性,通常給出每個參數取值的具體參數值。
(2) AHP:首先分析評價系統中各要素之間關系,建立遞階層次結構;其次對同一層次的各要素之間的重要性進行兩兩比較,構造判斷矩陣;接著由每層判斷矩陣計算相對權重;最後計算系統總目標的合成總權重。
(3) 熵權法:通過求解候選網路中的同一屬性的熵值,熵值的大小表明網路同一屬性的參數值的差異,差別越大,說明該屬性對決策影響越大,相應權值的取值就越大。
(4) 基於方差和均值賦權法:通過求解候選網路中同一屬性參數的均值和方差,結合這兩個參數確定該屬性的重要性程度值,然後再對其進行歸一化,得到每個屬性的參數值。
其他方法
(1) 基於方差和均值賦權法:通過求解候選網路中同一屬性參數的均值和方差,結合這兩個參數確定該屬性的重要性程度值,然後再對其進行歸一化,得到每個屬性的參數值。
(2) 逼近理想解排序法(TOPSIS):首先對參數進行歸一化,從網路的每組屬性參數值里選擇最好的參數組成最優的一組屬性參數,同樣也可以得到最差的一組屬性參數。將每個網路與這兩組參數比較,距離最優參數組越近,並且與最差組越遠,該網路為最合適的網路。
(3) 灰度關聯分析法(GRA):首先對參數進行歸一化,再利用GRA方法,求得每個網路的每個屬性的關聯系數,然後求出每個網路總的關聯系數。根據每個網路總的關聯系數,選擇最適合的網路。
(4) 消去和選擇轉換法(ELECTRE):首先對參數進行歸一化,構造加權的規范化矩陣,確定屬性一致集和不一致集。然後計算一致指數矩陣和劣勢矩陣,最後得到一致指數矩陣和不一致指數矩陣。根據這兩個矩陣,確定網路的優劣關系,選擇最適合的網路。
VIKOR:首先對參數進行歸一化,首先確定最優和最差屬性參數組,然後計算得到每個網路屬性的加權和屬性中最大的參數值,然後利用極差規范化對網路的加權和以及最大屬性值進行歸一化,最後利用歸一化的參數進行加權求和,依據這個值,選擇最合適的網路。
㈤ 什麼是異構型網路
異構網路環境,是由不同製造商生產的計算機,網路設備和系統組成的,這些計算機系統運行不同的操作系統和通信協議,想統一其計算機資源的機構通常會面臨集成異種機系統的任務。