A. 卫星轨道的轨道分类
就人造地球卫星来说,其轨道按高度分低轨道和高轨道,按地球自转方向分顺行轨道和逆行轨道。这中间有一些特殊意义的轨道,如赤道轨道、地球同步轨道、对地静止轨道、极地轨道和太阳同步轨道等。
卫星轨道的形状和大小是由长轴和短轴决定的,而交点角Ω、近地点幅角ω和轨道倾角i则决定轨道在空间的方位。这五个参数称为卫星轨道要素(根数)。有时还加过近地点时刻tp,合称为六要素。有了这六要素,就可知道任何时刻卫星在空间的位置。
卫星轨道六要素:长轴、短轴、交点角Ω、近地点幅角ω、轨道倾角i、过近地点时刻tp。
高低轨道没有明确的划分界限,一般把离地面几百公里的卫星轨道称为低地球轨道。
轨道倾角为零,轨道平面与地球赤道平面重合。这种轨道叫赤道轨道。
轨道高度为35786公里时,卫星的运行周期和地球的自转周期相同,这种轨道叫地球同步轨道;如果地球同步轨道的倾角为零,则卫星正好在地球赤道上空,以与地球自转相同的角速度绕地球飞行,从地面上看,好像是静止的,这种卫星轨道叫对地静止轨道,它是地球同步轨道的特例。对地静止轨道只有一条。
轨道倾角为90度时,轨道平面通过地球两极,这种轨道叫极地轨道。
如果卫星的轨道平面绕地球自转轴的旋转方向、角速度与地球绕太阳公转的方向和角速度相同,则它的轨道叫太阳同步轨道。太阳同步轨道为逆行轨道,倾角大于90度。
B. 卫星的轨道有哪几种
3种,高轨道卫星距离地表约36000公里高空(Geo: Geostationary Orbit)
中轨道卫星:中地球轨道(MEO: Medium-Earth Orbit)
低轨道卫星(又称绕极卫星):低地球轨道(LEO: Low-Earth Orbit)
C. 卫星的轨道形状
卫星的轨道形状有:椭圆形、抛物线形、双曲线形。卫星轨道平面通过地球中心,如果速度稍大一些,则形成椭圆形轨道。如果达到逃逸速度,则为抛物线轨道。如果达到第三宇宙速度,则为双曲线轨道。
卫星轨道
卫星轨道的形状和大小是由长轴和短轴决定的,而交点角Ω、近地点幅角ω和轨道倾角i则决定轨道在空间的方位。
就人造地球卫星来说,其轨道按高度分低轨道和高轨道。按照轨道倾角大小,卫星的轨道可分为:赤道轨道、极地轨道、倾斜轨道。
卫星飞行的水平速度叫第一宇宙速度,即环绕速度。卫星只要获得这一水平方向的速度后,不需要再加动力就可以环绕地球飞行。此为卫星轨道。
D. 通信卫星一般采用哪些轨道
通信卫星一般采用地球静止轨道,这条轨道位于地球赤道上空35786千米处。卫星在这条轨道上以每秒3075千米的速度自西向东绕地球转,绕地球一周的时间为23小时56分4秒,恰与地球自转一周的时间相等。
E. 卫星的轨道形状是什么
椭圆形轨道、抛物线轨道和双曲线轨道。
如果我们把地球看成一个均质的球体,它的引力场即为中心力场,其质心为引力中心。那么,要使人造地球卫星(简称卫星)在这个中心力场中作圆周运动,通俗地说,就是要使卫星飞行的力加速度所形成的力(离心惯性),正好抵消(平衡)地心引力。
人造地球卫星轨道按离地面的高度,可分为低轨道、中轨道和高轨道;按形状分可分为圆轨道和椭圆轨道;按飞行方向分可分为顺行轨道(与地球自转方向相同)、逆行轨道(与地球自转方向相反)、赤道轨道(在赤道上空绕地球飞行)和极轨道(经过地球南北极上空)。人造地球卫星还有以下几种特殊轨道。
地球同步轨道。卫星在顺行轨道上绕地球运行时,其运行周期(绕地球一圈的时间)与地球的自转周期相同。这种卫星轨道叫地球同步轨道。
F. 什么是静止卫星
位于地球赤道上空距地面约 3.6万千米处相对于地面静止的卫星。在惯性空间中它沿着一条倾角为零的圆轨道运动。为了将卫星送入这条轨道 ,其发射过程通常分为 3 个阶段 :①用一、二级运载火箭(或航天飞机)将卫星连同三级火箭一起送入高度为200~400千米的近圆形停泊轨道。由于受发射场地理纬度的限制,停泊轨道的倾角一般都不为零。②卫星在停泊轨道上飞经赤道上空时第三级火箭开始工作,使卫星沿飞行方向加速 ; 第三级火箭工作结束以后与卫星分离,卫星进入一个大椭圆的过渡轨道,轨道的远地点高度达到约3.6 万千米,且位于赤道上空。卫星在过渡轨道上运行一段时间,由测控系统对卫星的轨道和姿态进行精确的测量,确定远地点发动机的点火时刻,并通过遥控指令由卫星姿控系统将卫星的姿态进行调整,使其在远地点发动机工作时具有所需要的姿态。③当卫星运行到预定的远地点,测控系统发出遥控指令使远地点发动机点火,以使卫星获得所需要的速度增量,将卫星的轨道变成与静止轨道很接近的圆形赤道轨道 。 卫星在这样的轨道上运动时相对于地球一般并不静止,它将向西或向东漂移;此外,它相对于赤道还可能会有一个小的倾角,卫星相对于赤道还会有南北方向的漂移,因此又称这个轨道为准同步轨道或漂移轨道。为了使卫星静止在预定的位置上,还需进行一系列的轨道微调,先使卫星尽快漂移到预定位置上,然后再将轨道调整为静止卫星轨道,使卫星停止漂移,完成静止卫星的定点。
G. 地球人造卫星有几种轨道
人造地球卫星轨道按离地面的高度,可分为低轨道、中轨道和高轨道;按形状分可分为圆轨道和椭圆轨道;按飞行方向分可分为顺行轨道(与地球自转方向相同)、逆行轨道(与地球自转方向相反)、赤道轨道(在赤道上空绕地球飞行)和极轨道(经过地球南北极上空)。人造地球卫星还有以下几种特殊轨道。
地球同步轨道
地球同步轨道。卫星在顺行轨道上绕地球运行时,其运行周期(绕地球一圈的时间)与地球的自转周期相同。这种卫星轨道叫地球同步轨道。
地球静止卫星轨道。
如果地球同步轨道卫星正好在地球赤道上空离地面35786千米的轨道上绕地球运行,由于它绕地球运行的角速度与地球自转的角速度相同,从地面上看去它好像是静止的,这种卫星轨道叫地球静止卫星轨道。地球静止卫星轨道是地球同步轨道的特例,它只有一条。
太阳同步轨道
太阳同步轨道。由于地球扁率(地球不是圆球形,而是在赤道部分隆起),卫星轨道平面绕地球自转轴旋转。如果卫星轨道平面绕地球自转轴的旋转方向和角速度与地球绕太阳公转的方向和平均角速度相同,则这种卫星轨道叫太阳同步轨道。
停泊轨道
概述
停泊轨道(parking orbit) 航天器为了转移到另一条轨道去而暂时停留的椭圆(圆)轨道,又称驻留轨道。
分类
停泊轨道按中心体不同分为地球停泊轨道、月球停泊轨道和行星停泊轨道。地球停泊轨道是发射月球探测器、登月载人飞船、空间探测器和离地球较远的人造地球卫星(如静止卫星)的一个阶段,用于选择进入过渡轨道的入轨点,以弥补地面发射场地理位置固定的缺点,满足过渡轨道的要求。月球和行星停泊轨道用于选择进入轨道的起点,以保证航天器降落在天体表面的指定地区。对于返回地球的航天器,同样可以选择返回轨道的起点,以保证航天器能够准确进入再入走廊。此外,安排停泊轨道还为飞往新轨道之前提供最后全面检查航天器各系统可靠性的机会。
回归轨道
回归轨道(recursive orbit)
星下点轨迹周期性出现重迭现象的人造地球卫星轨道。重迭出现的周期称为回归周期。工程中回归周期的大小根据卫星的使命确定。同一个回归周期对应有很多条轨道。如回归周期为一天时,运行的轨道周期可近似为24小时、8小时……,从中可以选出合适的运行周期以满足卫星使命的要求。在回归轨道上运行的卫星,每经过一个回归周期,卫星重新依次经过各地上空。这样可以对卫星覆盖的区域进行动态监视,借以发现这一段时间内目标的变化。在轨道设计中,回归轨道仅限制轨道运行周期,若再选择其他参数,可设计出太阳同步回归轨道。这样的轨道兼有太阳同步轨道和回归轨道的特性。选择合适的发射时间,可使卫星在经过某些地区时这些地区有较好的光照条件。以获取地面图像为目的的卫星,像侦察卫星、气象卫星、地球资源卫星大都选择这种轨道。回归轨道要求轨道周期在较长时间内保持不变,因此,卫星必须具备轨道修正能力,以便能够克服入轨时的倾角偏差、周期偏差和补偿大气阻力引起的周期衰减。
极轨道
polar orbit
倾角为90°的人造地球卫星轨道。又称极地轨道。在极轨道上运行的卫星,每一圈内都可以经过任何纬度和南北两极的上空。由于卫星在任何位置上都可以覆盖一定的区域 ,因此,为覆盖南北极,轨道倾角并不需要严格的90°,只需在90°附近就行。在工程上常把倾角在90°左右,但仍能覆盖全球的轨道也称为极轨道。近地卫星导航系统(如美国海军导航卫星系统)为提供全球的导航服务采用极轨道。许多地球资源卫星、气象卫星以及一些军事侦察卫星采用太阳同步轨道,它们的倾角与90°只相差几度,所以也可以称其为极轨道。还有一些研究极区物理的科学卫星也采用极轨道。