‘壹’ rbf神经网络原理是什么
rbf神经网络原理是用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。
当RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和,此处的权即为网络可调参数。其中,隐含层的作用是把向量从低维度的p映射到高维度的h,这样低维度线性不可分的情况到高维度就可以变得线性可分了,主要就是核函数的思想。
RBF神经网络的隐节点
RBF神经网络的隐节点采用输入模式与中心向量的距离(如欧式距离)作为函数的自变量,并使用径向基函数(如Gaussian函数)作为激活函数。神经元的输入离径向基函数中心越远,神经元的激活程度就越低(高斯函数)。
RBF网络的输出与部分调参数有关,譬如,一个wij值只影响一个yi的输出(参考上面第二章网络输出),RBF神经网络因此具有“局部映射”特性。
‘贰’ 神经网络 的四个基本属性是什么
神经网络 的四个基本属性:
(1)非线性:非线性是自然界的普遍特征。脑智能是一种非线性现象。人工神经元处于两种不同的激活或抑制状态,它们在数学上是非线性的。由阈值神经元组成的网络具有更好的性能,可以提高网络的容错性和存储容量。
(2)无限制性:神经网络通常由多个连接广泛的神经元组成。一个系统的整体行为不仅取决于单个神经元的特性,而且还取决于单元之间的相互作用和互连。通过单元之间的大量连接来模拟大脑的非限制性。联想记忆是一个典型的无限制的例子。
(3)非常定性:人工神经网络具有自适应、自组织和自学习的能力。神经网络处理的信息不仅会发生变化,而且非线性动态系统本身也在发生变化。迭代过程通常用来描述动态系统的演化。
(4)非凸性:在一定条件下,系统的演化方向取决于特定的状态函数。例如,能量函数的极值对应于系统的相对稳定状态。非凸性是指函数具有多个极值,系统具有多个稳定平衡态,从而导致系统演化的多样性。
(2)图神经网络中的节点中心性是什么扩展阅读:
神经网络的特点优点:
人工神经网络的特点和优越性,主要表现在三个方面:
第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。
第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。
第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
‘叁’ 什么是图神经网络
图说的是计算机拓扑里面的图
就是那个有边和节点,有向图,无向图的那个。
以这种数据结构为输入并进行处理的神经网络就是图神经网络了,结构会不太一样,但是大同小异了。
‘肆’ 图神经网络是什么
图神经网络是一种直接作用于图结构上的神经网络。GNN的一个典型应用是节点分类。本质上,图中的每个节点都与一个标签相关联,我们希望预测未标记节点的标签。
‘伍’ 神经网络中每个节点的运算方式都是一样的吗想被科普一下
同一层,基本都是一样的。
这层的输出=f(输入的加权和),加权和=输入1*参数1+输入2*参数2。。。+偏执项,再把这个加权和经过f函数的计算,得到这层的输出
所以,从这个过程来看,每一层所有节点的函数f是一样的,输入也是一样的。不同的是参数1,参数2。
参数之所以会不一样,是因为初始化的参数是不一样的,比如服从某个分布的。所以每一层每个节点的输出也是不一样的。
如果存在任意一层所有参数都一样,这种操作允许,但没意义,这个时候这一层就等效为一个节点。
‘陆’ 神经网络模型的介绍
神经网络(Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学习系统。神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
神经网络的基础在于神经元。
神经元是以生物神经系统的神经细胞为基础的生物模型。在人们对生物神经系统进行研究,以探讨人工智能的机制时,把神经元数学化,从而产生了神经元数学模型。
大量的形式相同的神经元连结在—起就组成了神经网络。神经网络是一个高度非线性动力学系统。虽然,每个神经元的结构和功能都不复杂,但是神经网络的动态行为则是十分复杂的;因此,用神经网络可以表达实际物理世界的各种现象。
神经网络模型是以神经元的数学模型为基础来描述的。人工神经网络(ArtificialNuearlNewtokr)s,是对人类大脑系统的一阶特性的一种描。简单地讲,它是一个数学模型。神经网络模型由网络拓扑.节点特点和学习规则来表示。神经网络对人们的巨大吸引力主要在下列几点:
1.并行分布处理。
2.高度鲁棒性和容错能力。
3.分布存储及学习能力。
4.能充分逼近复杂的非线性关系。
在控制领域的研究课题中,不确定性系统的控制问题长期以来都是控制理论研究的中心主题之一,但是这个问题一直没有得到有效的解决。利用神经网络的学习能力,使它在对不确定性系统的控制过程中自动学习系统的特性,从而自动适应系统随时间的特性变异,以求达到对系统的最优控制;显然这是一种十分振奋人心的意向和方法。
人工神经网络的模型现在有数十种之多,应用较多的典型的神经网络模型包括BP神经网络、Hopfield网络、ART网络和Kohonen网络。 学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法。而有的算法可能可用于多种模型。在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。神经网络在学习中,一般分为有教师和无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的。在主要神经网络如Bp网络,Hopfield网络,ART络和Kohonen网络中;Bp网络和Hopfield网络是需要教师信号才能进行学习的;而ART网络和Khonone网络则无需教师信号就可以学习49[]。所谓教师信号,就是在神经网络学习中由外部提供的模式样本信号。
‘柒’ 什么是神经网络的节点数
隐层节点数
在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。 目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。
在确定隐层节点数时必须满足下列条件:
(1)隐层节点数必须小于N-1(其中N为训练样本数),否则,网络模型的系统误差与训练样本的特性无关而趋于零,即建立的网络模型没有泛化能力,也没有任何实用价值。同理可推得:输入层的节点数(变量数)必须小于N-1。
(2) 训练样本数必须多于网络模型的连接权数,一般为2~10倍,否则,样本必须分成几部分并采用“轮流训练”的方法才可能得到可靠的神经网络模型。
总之,若隐层节点数太少,网络可能根本不能训练或网络性能很差;若隐层节点数太多,虽然可使网络的系统误差减小,但一方面使网络训练时间延长,另一方面,训练容易陷入局部极小点而得不到最优点,也是训练时出现“过拟合”的内在原因。因此,合理隐层节点数应在综合考虑网络结构复杂程度和误差大小的情况下用节点删除法和扩张法确定。
‘捌’ 神经网络中聚类中心与数据中心有什么区别
聚类中心只是在利用聚类方法求解数据中心的过程中,数据中心的一个暂时的名字而已。比如我们在求解数据中心开始的时候,根据所选择的数据随便数据作为聚类中心,经过不断的更新最终成为了数据中心。
‘玖’ 神经网络的主要内容特点
(1) 神经网络的一般特点
作为一种正在兴起的新型技术神经网络有着自己的优势,他的主要特点如下:
① 由于神经网络模仿人的大脑,采用自适应算法。使它较之专家系统的固定的推理方式及传统计算机的指令程序方式更能够适应化环境的变化。总结规律,完成某种运算、推理、识别及控制任务。因而它具有更高的智能水平,更接近人的大脑。
② 较强的容错能力,使神经网络能够和人工视觉系统一样,根据对象的主要特征去识别对象。
③ 自学习、自组织功能及归纳能力。
以上三个特点是神经网络能够对不确定的、非结构化的信息及图像进行识别处理。石油勘探中的大量信息就具有这种性质。因而,人工神经网络是十分适合石油勘探的信息处理的。
(2) 自组织神经网络的特点
自组织特征映射神经网络作为神经网络的一种,既有神经网络的通用的上面所述的三个主要的特点又有自己的特色。
① 自组织神经网络共分两层即输入层和输出层。
② 采用竞争学记机制,胜者为王,但是同时近邻也享有特权,可以跟着竞争获胜的神经元一起调整权值,从而使得结果更加光滑,不想前面的那样粗糙。
③ 这一网络同时考虑拓扑结构的问题,即他不仅仅是对输入数据本身的分析,更考虑到数据的拓扑机构。
权值调整的过程中和最后的结果输出都考虑了这些,使得相似的神经元在相邻的位置,从而实现了与人脑类似的大脑分区响应处理不同类型的信号的功能。
④ 采用无导师学记机制,不需要教师信号,直接进行分类操作,使得网络的适应性更强,应用更加的广泛,尤其是那些对于现在的人来说结果还是未知的数据的分类。顽强的生命力使得神经网络的应用范围大大加大。
‘拾’ 神经网络节点数啥所有神经网络都有嘛
隐层节点数在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。 目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。在确定隐层节点数时必须满足下列条件:(1)隐层节点数必须小于N-1(其中N为训练样本数),否则,网络模型的系统误差与训练样本的特性无关而趋于零,即建立的网络模型没有泛化能力,也没有任何实用价值。同理可推得:输入层的节点数(变量数)必须小于N-1。 (2) 训练样本数必须多于网络模型的连接权数,一般为2~10倍,否则,样本必须分成几部分并采用“轮流训练”的方法才可能得到可靠的神经网络模型。 总之,若隐层节点数太少,网络可能根本不能训练或网络性能很差;若隐层节点数太多,虽然可使网络的系统误差减小,但一方面使网络训练时间延长,另一方面,训练容易陷入局部极小点而得不到最优点,也是训练时出现“过拟合”的内在原因。因此,合理隐层节点数应在综合考虑网络结构复杂程度和误差大小的情况下用节点删除法和扩张法确定。