导航:首页 > 无线网络 > 无线网络优化蜂窝组网

无线网络优化蜂窝组网

发布时间:2022-06-30 02:56:30

Ⅰ 无线局域网和蜂窝网络是什么意思

无线局域网是指wifi,蜂窝数据即从数据的传输到交换都采用分组技术,用户端配置无线分组调制解调器,通过专门的分组基站进入分组网,可以访问分组网上的主机、数据库。

蜂窝移动通信业务是指经过基站子系统和移动交换子系统等设备组成的蜂窝移动通信网络中提供的语音、数据、视频图像等业务,蜂窝移动数据即为蜂窝移动通讯中产生数据,也就是通常所说的“数据流量”。所以苹果在 iPhone 上使用“蜂窝移动数据”其实是更为准确的名称。

设置蜂窝移动网络

首先找到手机的“设置”图标,点击“设置”,找到“通用”,点击“通用”,找到“蜂窝移动网络”,打开“蜂窝移动数据”。

如果你的手机卡支持3G上网,还可以打开3G选项,这样可以大大提高上网的速度,但同时也会增大电量的消耗。数据漫游。这个选项一般都没有打开,用手指向上滑动,可以看到更多的选项。

Ⅱ 什么是蜂窝无线网络

其实就是流量。3G就是蜂窝结构的,就是基站与基站之间以正六边形的边为交叉重合边,根据机站所处的位置的用户人数来决定蜂窝的大小和密集度。

Ⅲ 无线网络未来会与蜂窝网络融合吗

按照专家的观点,我们最终要实现这个目标。即蜂窝技术和无线网络将在未来的几年内合并。或许在不远的未来,用户将会拥有无缝的无线网络或蜂窝无线网络的环境。 在本次国际消费电子展上,很多话题都围绕这些技术进行概述,谈论这些无线网络和蜂窝网络是如何逐渐融合的。而在这些技术背后,芯片设计师、网络工程师、网络管理员将要支持大量不同的技术,但是其目标是呈现给终端用户不可见的网络基础设施。高通创锐讯的高级副总裁Dan Rabinovits说,“所有新网络技术的结合比任何一个技术更重要。这是因为,用户对数据容量有无止境的渴望。” 斯普林特公司网络开发与工程副总裁IyadTarazi说,“顾客想要蜂窝技术和无线网络的融合。他们不想要4G或802.11ac,他们想要的是多样化的网络而且他们希望网络可以为他们及时提供快速、可靠和可用的资源。满足这种要求的唯一方式就是不同网络间进行融合。” 这就意味着,无论用户是在办公室还是在他们的车里,为了提供给用户透明的网络连通性,专家们正在试图寻找一种不同的技术。第一种技术是Hotspot 2.0。持有Hotspot 2.0技术,一旦用户在网络上得到授权,它使用IEEE 802.11u标准,以使你的网络设备能够发现、自动选择并连接到你偏爱的无线网络或蜂窝网络,一旦登录网络,你就可以在无线网络hotspot和LTE之间来回漫游,而无需返回登录。 令人庆幸的是,所有的蜂窝技术厂商和无线厂商正在致力于研究这些设备。而且,每个人也在研究制定这些迷你电池系统,这样他们就能以一个快速的、自主的方式进行部署。德国电信公司无线电网络工程和开发副总裁马克迈克迪米德告诫说,“这是小蜂窝的一个愿景,但残酷的现实是,供应系统是非常复杂的;为小蜂窝提供回程技术仍是一个问题;而且很多工作还需要用电源管理来完成。要实现这个目标还有很长一段时间。”

Ⅳ 蜂窝网特点有哪些

蜂窝网的特的主要如下:

1,IP化:实现宽带、ALLIP基站及端到端ALLIP;

2,绿色网络:实现可持续发展,保护环境;

3. 频率复用。有限的频率资源可以在一定的范围内被重复使用。

4.小区分裂。当容量不够的时候,可以减小蜂窝的范围,划分出更多的蜂窝,进一步提高频率的利用效率。

Ⅳ 无线通信网络优化做什么无线网络优化的三个步骤

无线通信网络优化是一项持续性长的系统工程,无线通信网络优化主要有三个步骤:采集数据、分析性能、实施和测试优化方案。
采集数据是指对网络设计目标、网络总体运行和其工程情况的系统数据进行采集,其目的是对网络性能和质量能够更加有针对性的分析。采集数据的方法有话务数据采集和路测数据采集两种。
其中,话务数据采集主要有网络接入性能数据、信道接通率、可用率、拥塞率、掉线率、话务转换成功率、话统报告图表等。路测数据采集则是指通过路测设备对无线通信网络的覆盖、转换、质量现状等进行定性定量定位。
分析性能是指通过上面的两种数据采集方法,对采集到的数据进行有效分析,以便制定网络优化方案。对采集的数据主要从干扰、掉话、转换、话务均衡四个方面来分析通信网络性能。无线通信网络一般发生的故障有:接入失败、切换失败、掉话、高错误帧率。
导致掉话的故障则可能是:覆盖盲区、硬件故障、交换链路失败、搜索窗长度设置不正确、深度衰落、阴影衰落、其他网络干扰等;而引起高误帧率的故障原因有:前向/反向业务信道差、前向/反向链路功控问题、导频污染、导频信号差等。
另外,在对关于通话干扰的数据进行分析后,我们可以得知GSM系统正是一个干扰受限的系统。干扰使得错误率增加,进一步降低语音通话的质量。
最后,在对无线网络的性能分析完成后,就要实施和测试优化方案。实施的优化方案主要包括了覆盖优化、设备优化、硬件系统优化、话务量优化、干扰信号分析、网络结构优化、无线参数优化、容量优化及领区优化等。实施优化方案后必须重新对无线网络进行测试,测试的重点是对无线网络中的覆盖、接入、干扰、掉话、容量等的测试。

Ⅵ 请问WCDMA网络优化里的切换步骤是哪些

利用天线下倾法减少高话务密度区干扰
引言
在移动通信系统发展的早期阶段,基站天线辐射图主要取决于在规定的覆盖范围内确保通信可靠所需的增益,并且往往采用全向辐射方式。随着话务量的增加,则在不同地理位置或无线小区通过重复使用频率的方法,提高频谱利用率。更进一步,还需要把无线小区细分成扇区。
1.1.水平波束宽度
在蜂窝移动电话系统中,增加话务容量的第一步是采用定向天线水平排列。也就是说,在一个基站使用数根天线,每个小区分成三或六个扇区。每个扇区指定一组专用频率。
例如,复用因子K=7,每个小区3个扇区(亦称为7/21),此频率复用方式如图一所示,(图略)图中还标出了所用频道组序号。R代表小区半径,频率复用距离D是使用相同频率配置的两个小区之间的最短距离。使有相同频率的基站是同频道干扰的来源,图中以阴影表示。
由于基站天线具有定向特性,基站接收到的干扰电平就会减弱。这是因为主天线波瓣狭窄,所接收的干扰移动台信号较少。[参考书目一]中建议采用三扇区一120度扇区一系统,而在某些热点,可局部采用60度扇区系统。我们选用的是水平天线辐射图,这样,各扇区之内的电场强度就能尽量保持恒定。 到目前为止,我们都是水平面内考虑天线辐射图。使用水平波束天线,会增中系统中使用天线的总数,从而导致成本增加。随着话务量的增加,应该另想办法减少同频道干扰。其中一个办法就是对天线水平面辐射图进行整形。
1.2.垂直波束宽度
所需基站天线,对使用相同频率小区其辐射能量应尽可能地低,而在服务区内的辐射则要尽可能地高。
倾斜主波瓣可产生理想的效果,尤其是与抑制邻近主波瓣的旁瓣结合使用效果更好。对图二中标示“下旁瓣区域”内的旁瓣进行抑制,是很重要的。(图略)
尽管在主瓣上侧有陡斜的天线辐射图也是理想的,但在实践中,如果不把天线做得很大(这样亦会影响天线的成本),就不可能有实质性的改进。 主波束下倾有两种方法:
机械式天线倾斜
改变天线振子的相位,使波束下倾(电子式下倾)
本文以下分析旨在调查:何种下倾法在减少同频道干扰方面能提供更好的工作性能。
2.确定选用何种下倾法
2.1.机械式或电子式
两种不同的下倾方法,产生不同的表面辐射。在下倾角度小时,这种区别不明显;但随着下倾角度的加大,这种区别即显而易见。以下举几个表面辐射的例子。(图略)
可以看出,在电子式下倾的例子中,地面辐射图在下倾角度增中时仍保持有形状;但在机械式下倾的例子中,辐射图出现一个“低凹”,与此同时,侧辐射增加。这种效应在机械式下倾天线中是众所周知的,请参阅[参考书目一]中W. Lee, Mobile Cellular Telecommunications一书。从减少来自基站B1(见图一)(图略)移动台干扰的角度来看,这种“低凹”没有什么不好。但是随着侧辐射的增加,接收到的来自基站B2和B6移动台的干扰也同时增加了。
我们对这种效应进行量性估计,以下详述此方法。
我们就载干比的改善,对电子式与机械式下倾法作了一番比较。用于比较的天线是标准8振子天线,各振子相隔半个波长,一个辐射振子的方位辐射图如图六所示。(图略)不同对图七所示不同下倾方式(图略),通过的两种不同方法进行计算。 从图一的频率复用示意图可以看出,在一个特定基站周围有六个干扰源。
最差载干比出现在小区边缘。在主波束下倾情况下,虽然收到的来自移动台的功率C减小,但是接收到的干扰减小更多,从使载干比C/1得到改善。
使用电子式和机械式下倾天线的辐射图,我们对信号电平和干扰电平与下倾角度的函数关系作了计算。所有基站天线都以同样角度下倾。计算结果如八a和八b所示。(图略)
首先,接收到的来自移动台的信号电平用图七表示。可以看到,电子式和机械式下倾法之间没有多大区别。 其次,接收到的来自基站1的干扰电平用八b表示。两种类型的下倾法在干扰抑制方面没有多大区别。
接收到的来自基站2移动台的干扰情况就大不相同了。干扰抑制如图九所示。(图略)可以看到,电子式下倾法大大地抑制了干扰,而机械式下倾法则做不到这一点。在考察接收到的来自基站3,5,6移动台的干扰时,电子式下倾法相对于机械式同样具有优势。
6移动台的干扰时,可以看到,电子式下倾法相对于机械式同样具有优势。
综上所述,电子式下倾法在改善载干比方面要比机械式下倾法好得多。因而可以说,对于基站天线而言电子式下倾法是更为可取的选择。
在评估电子式和机械式下倾法时,还有一个因素需要考虑。在市区通信网中,小区内有很多人工障碍物,这一点是很特殊的。这些障碍物会引起多次反射,造成传播信道中的多路径效应。RMS延迟范围对传播信道来说是一项重要的参数,它可成为高信息传输速率系统的限制因素。如[参考书目二]一文所测出的那样,当主波束下倾并且基站天线略高于一般情况时,可缩小RMS延迟范围。如图十所示,椭圆区域散射出的所有信号,都会在具有相同延迟的接收台产生反应。比较图十一(甲)和图十一(乙)(图略)所示电子式和机械式下倾法的表面辐射图,可以清楚地看到:采用电子
总之,电子式下倾法比机械式下倾法更可取,因为:
·在多数情况下它能更多地降低干扰电平
·地面辐射图失真更小
·信号的RMS延迟范围可降至最小
2.2 最佳下倾角度的确定
利用上述模型,我们对计算几种不同下倾角度的载干比C/1。设移动台天线高度为1.6米,基站天线高度20至60米,至移动台距离R=2公里,至干扰源的距离如图一所示,图十二显示了电子式和机械式下倾法载干比C/1的改善。(图略)
可以看到,在使用电子式下倾法的情况下,由下倾产生的改善更为明显,至少从频率复用方面考虑是如此。还可以注意到的是:使用机械式下倾法时下倾角度有最佳值(在四度附近区域最佳),而电子式下倾法的下倾角度增大时,载干比亦随之增大,至少从下倾角度方面考虑是如此(对大于15度的下倾角度,第一辐射盲区会在服务区内,使接收到的信号电平出现显着变这种情况是应当避免的)。当基站天线高度增加时,下倾法的优点更为突出。
从图八和图十二可以清楚地看到:在信号电平C和载干比C/1之间存在着某种折衷。最佳下倾角度值取决于小区尺寸、天线辐射图及天线高度。此外,由于每个小区每天二十四小时话务量的变化,各小区的最佳尺寸亦变化。如果使用DELTEC(登达新西兰有限公司)的Teletilt天线产品系列,则可以改变小区尺寸且延迟最小。
虽然图八至图十二所示图形是根据简单的平坦地形模型计算的,但它们显示的趋势很好的预示了实际应用时发生的情况。在高低不平的地面和建筑物林立的场所,载干比C/1的改善会受到影响。在实际应用时,可通过略微增加基站天线高度和使用电子式下倾方法,来性改善效果。此外,如果在频率复用方式中所用的复用因子较小(例如,K=4),复用距离就会较小,则载干比C/1的改善更显着。
3.确定最佳天线位置,充份利用倾斜效果
如果某个基站运行在话务密度高的市区,天线可安放在低于房顶的位置,以减小小区尺寸,尤其在微小区受干扰限制的系统内更是如此。建筑物对传播损耗的影响通常为10-15分贝,与“衍射屏模型”所示一致[参考书目三]。在这种情况下,地面辐射由于街道的渠网效应而呈菱形(见图十三)(图略)。
但是,在市区条件下,服务区的确切形状并不容易确定,因为它会受到局部障碍的很大影响,任何有相当精度的场强估值,都需要一个高分辨率地理数据库。尽管存在这些困难,但如果必须用微小区来满足高话务密度容量要求,则基站天线安装低于均屋顶线,是一种可行的选择。
对于小区,可通过天线安装高于房顶并且下倾主波束的方法,减小其尺寸。这种方式的优点将在后面详述。
我们可以按照两方面的因素来估算移动台接收到的信号强度变化:
(1)改变基站天线的高度
(2)主波束下倾
我们用[参考书目三]中有关衍射屏模型的阐述,来解释图十四所示的情况。(图略)
结果如图十五和图十六所示。(图略)可以看到,当基站天线的高度低于房顶平均高度时(假定为15米)信号电平急剧下降。这种情况下的信号强度,在图十五中表示。
通过主波束下倾也可以得到类似的信号强度衰减。如果天线安装高于房顶平均高度并且采用波束下倾的方法,则信号电平亦会下降,如图十六所示。要充份发挥下倾法的优越性,我们建议基站天线安装应略高于房顶平均高度。
这各方法的优点:
·把信号传播路径中障碍物的影响降至最低,从而妥善控制小区形状
·通过更直接的信号路径降低RMS延迟范围[参考书目二]
·信号路径损耗降低,整个小区的信号电平变化减少
·用改变倾斜角度这一更灵活的手段来改变小区尺寸
·通过遥控调整下倾角度的方法,小区尺寸在通信网络发展或出现临时“热点”的情况下易于改变[参考书目四]。
结论
·对于受干扰限制的高话务密度通信网络,主波束下倾可成为提高载干比C/1的有效工具
·电子式倾斜法比机械式倾斜法更可取,因为:
·在多数情况下,它能更好地改善载干比C/1
·地面辐射图失真更少
·信号RMS延迟范围降至最小
·可变电子倾斜法比固定倾斜法更好,因为:
·在为提高性能所进行的调整工作中成本降低障碍减少
·在通信网络发展时,不必随场地变化而更换天线或改变天线高度
·可现场(不可选择)进行蜂窝规划
·具有更大的灵活生
·可简化天线库存
·可延长天线的使用寿命
·遥控电子下倾法比现场调整更好,因为:
·不必现场直接接触天线
·进行调整的成本降低,速度加快
·调整下倾角度时不需要关闭基站,或使人员受到射频能量辐射
·调整不受天气影响,可独立进行
·通过略微增加基站天线高度和天线倾斜法
·可进一步减小传播路径RMS延迟范围
·如果采用遥控式下倾调整,则小区尺寸在延迟最小的情况下进行调整,以改变信道负荷这可以通过安装(登达新西兰有限公司)DELTEC’s Teletilt系列天线产品而实现。
浅谈网络优化与天馈线维护和保养的关系
摘要:本文对日常维护中遇到的天馈线问题的剖析,阐述了天馈线维护和保养与网络优化之间的重要关系,提出了常见的天馈线问题的处理方法。
关键词:网络优化 天馈线 维护
前言
天馈线的维护和保养是移动通信网络优化的重要组成部分,其技术要求高,维护工作具有长期性和艰巨性,对移动网络运行良好与否至关重要,搞好移动通信网络优化必须把天馈线维护保养工作贯穿于移动通信维护工作的始终。
下面着重就天馈线安装和维护经常出现的故障,谈一谈天馈线的维护和保养。
一、天馈线的维护和调整在网络优化中的重要地位
移动通信作为服务行业,只有提高通信质量,才能赢得用户满意。移动网络优化工作的目的在于提高网络质量。天馈线系统正常运行不仅能够扩大覆盖范围,减少盲区,提高覆盖率,而且能够减少干扰、串话等,降低掉话率,为用户提供优质服务。
基站安装不仅要合理地选择站址,而且还要合理控制基站天线高度,降低系统内干扰,保证网络的服务质量 。对于拥塞严重和掉话率高的基站可通过适当调整小区边界,切换带和手机接入条件等有关的参数,调整天线方向角度和俯仰角等硬件手段进行话务均衡,减少站间干扰。
例如:宿州华夏宾馆基站的天线高度50米,第三小区出现严重拥塞,掉话率达到3%--4%,为此,我们组织人员对BSC数据库进行分析,采取了如下措施:
a. 调整了华夏宾馆基站第三小区的天线俯仰角,由6°调整到10°;
b. 降低功率等级;
c. 在华夏宾馆和公安局基站之间增加了淮海路基站切换点。
措施实施后,效果比较明显,干扰级别降为正常,掉话率降为0.5%,话务得到均衡。
二、天馈线常见故障处理
1、天馈线安装问题
天馈线在安装过程中,由于安装人员疏忽,造成天馈线短路和馈线接头有灰尘、污垢,以及天馈线接头密封处老化断裂等。这些造成的天馈线故障,往往比较难于查找,特别是由于密封处断裂造成的活动障碍更难查找。
GSM二期工程芦岭基站安装完毕后,基站调试不通,西门子公司的人员去了几次也查不出问题,是基站硬件问题,还是电缆连接问题,还是天馈线问题呢?经多方查找,才发现是由于安装人员疏忽,在制作馈线接头时,把一个头发丝般的铜皮做在馈线的芯皮之间,致使馈线短路。重新制作馈线接头后,基站运行正常,但是为此各方面花费了多么大的精力,给移动局带来多么大的利益损失。
同样的,有些天馈线安装完毕后虽测试指标达到要求,但由于馈线尾巴线绑扎不牢,久经风吹雨打,造成封密处断裂,致使基站出现故障。宿州朱仙庄基站的馈线尾巴线绑扎不牢,正常使用八个月后,经常由于驻波比告警,造成基站Disable,我们认真分析原因,确定为馈线接头密封处由于风吹摇摆开裂。我们对接头处重新处理,加固馈线尾巴线,驻波比告警消失。覆盖距离由原先的1公里扩大到4--5公里,提高了基站的利用效率。象这一类情况非常多,如不及时处理,出现的问题会更多。
2、 天馈线进水的问题
天馈线进水问题的出现,既有人为的因素,也有自然的因素。
自然的因素是由于馈线本身进水。GSM二期工程时,适逢宿州发大水,有些馈线浸泡在水里。由于馈线长期在水中浸泡,造成馈线外皮老化,雨水渗透到馈线内。天馈线安装好以后,又没有按照要求进行驻波比测试,以致晴天时天馈线没有驻波比告警,阴天或下雨时,天馈线系统即有驻波比告警,造成基站Disable。为此,工程局和我方人员去了十几次也没有解决,后来用驻波比测试仪对馈线进行测试,发现造成该基站频繁退出的原因为:发射馈线进水。更换天馈线以后,故障排除。
人为造成天馈线进水的情况就更多,主要包括馈线接地处没有密封好、安装时划伤馈线、馈线和软跳线接头没有密封好等。
例如:砀山刘暗楼基站经常由于驻波比告警退出服务,我们派人进行检查,发现馈线第一次接地处人为拉伤,铜皮裸露,一下雨或阴天造成馈线进水,出现驻波比告警。
砀山范庄基站自1998年12月份开通以来,载频状态一直保持正常,但是第一区附近用户反映手机不能上网,维护人员检查基站各硬件盘全部正常,做话务统计发现该小区话务统计TCH占用次数为0,这说明手机在该小区不能上网服务。为此,我们配合西门子和工程局维护人员对该基站的软、硬进行彻底检查也没有发现问题,1999年7月底,我们配合工程局人员对该基站进行检查,检查天馈线部分时,用驻波比仪表测试后,测试值仅为13.2(少于17)。经分析,是由于安装时划伤馈线,造成馈线进水,致使基站表面运行正常,但是不能给用户提供服务,更换馈线后,该小区手机能够上网服务。该馈线安装造成的障碍自发现到排除历时半年之久。
泗县县城基站由于馈线与软跳线之间接头没有密封好,造成馈线进水,出现驻波比告警。接头处理后,告警消失,基站运行正常。
馈线进水造成馈线系统出现驻波比告警,基站经常退出服务,影响该地区的覆盖。用户投诉比较严重,不仅影响移动业务收入,而且影响移动部门的声誉。要防患于未然,首先安装人员严格要求自己,具有高度的责任感;其次,基站安装后都要进行驻波比测试,发现问题及时处理;最后,质检人员按照一定程序进行验收,包括测试数据的核实,天馈线的安装和制作工艺进行严格把关,决不能让不合格的工程蒙混过关。
三、 天馈线的保养
众所周知,900兆天线采用的频率为875--960MHZ,发射功率为20W,如此高的高频电磁波和较低的发射功率,经天馈线传导,如损耗过大,必将降低接收灵敏度。有时用户反映,基站刚开通时,手机接收灵敏度很高,不到两年灵敏度就降低了,特别是在覆盖区域边缘有时根本打不通,这是什么原因呢?经分析和实测,天馈线系统的保养维护是关键。如不进行保养维护灵敏度年平均降低15%左右。
如何保养天馈线呢?
1、 注意对天线器件除尘,高架在室外的天线,馈线由于长期受日晒、风吹、雨淋,粘上了各种灰尘、污垢,这些灰尘,污垢在晴天时的电阻很大,而到了阴雨或潮湿天气就吸收水份,与天线连接形成一个导电系统,在灰尘与芯线,芯线与芯线之间形成了电容回路,一部分高频信号,就被短路掉,使天线接收灵敏度降低,发射天线驻波比告警。这样的话,影响了基站的覆盖范围,严重时导致基站Disable。所以,应每年在汛期来临之前,用的中性洗涤剂给天馈线器件除尘。
2、 2、组合部位紧固。天线受风吹及人为的碰撞等外力影响,天线组合器件和馈线连接处往往会松动而造成接触不良,甚至断裂,造成天馈线进水和沾染灰尘,致使传输损耗增加,灵敏度降低,所以,天线除尘后,应对天线组合部位松动之处,先用细砂纸除污、除锈,然后用防水胶带紧固牢靠。
3、 3、校正固定天线方位。天线的方向和位置必须保持准确、稳定。天线受风力和外力影响,天线的方向和仰角会发生变化,这样会造成天线与天线之间的干扰,影响基站的覆盖。因此,对天馈线检修保养后,要进行天线场强,发射功率,接收灵敏度和驻波比测试调整。
4、 综上分析,要从根本解决天馈线存在问题,我们应从设备的日常维护上入手,定期对天馈线进行检查、测试,发现问题及时处理。维护人员和安装人员加强自身素质培训,掌握天馈线的安装和维护方法,利用丰富的维护手段,快速、准确地诊断和排除故障,提高维护效率,确保移动网络运行质量,加大我们在移动通信市场的竞争力度,使我们的移动通信网建设成一个畅通、高效的网络。

网络优化概述
网络优化主要分为:
小区优化 产数优化
对掉话率,呼叫建立失败率高的站进行现场勘察,排除设备硬件故障,天馈系统设计,频率干扰,站址选择上等方面等问题。 无线参数调整(越区切换,功率功控)与交换机参数调整。
无线规划优化 容量优化
通过频率调整消除网内干扰,避开网外干扰,调整小区覆盖范围,使话务量分布更合理,避免覆盖不足和越区覆盖。增删相邻小区关系使切换更合理,减少切换不当引起的掉话。 监控系统容量的增长,对网络的瓶颈及时提出预警,指出系统在配置上的不足之处,为扩容规划提供技术建议。
配置优化 新技术引入可行性分析
合理规划,配置交换机,基站 控制器,位置区,载频使中央 处理器,信令,基站控制器等 负荷维持在正常水平,从而 容纳更多的用户。 对引入微蜂窝,同心圆等新技术和新版本中的新功能进行可行性分析。
月度优化工作报告 网络扩容割接时的数据与频率计划和查核网络监控等
为了使客户对网络状况和优化工作有全面清晰的认识,网络优化提供优化项目月度报告。主要内容有: -网络指标及长期趋势图 -主要问题分析报告,解决方案和结果 -当月网络优化主要活动与进展 -下月工作计划和优化会议安排 -其他涉及优化的问题 网络扩容往往涉及大量数据改动和频率计划的全面更新,对数据库和频率计划进行检查直接关系到割接后网络质量是否能维持原来的水平,西门子网络优化运用网络无线特性的丰富经验,并运用先进的工具,帮助工程和频率规划部门设定合理的参数值,排除隐患,确保割接的顺利进行,并及时掌握最新情况,在第一时间发现解决问题。

采用调整天线俯角的方法优化网络性能
在无线网络优化过程中,经常需要调节基站小区覆盖范围,以调整服务小区,减轻忙小区话务负荷,消除同频干扰。为此,可通过调整小区定向天线俯角、升降天线高度、改变基站收发信设备、增加小区信道配置或增设小区、加大同频复用距离等方法实现上述目的,其中调整天线俯角的方法不需专门投资,且具有快捷和网络参数改变小等优点,是优化网络中常用的手段。
调整天线俯角仅针对定向天线而言,常用于60°和120°两类定向天线,垂直方向半功率角在8°和15°左右,下面根据不同的应用场合对天线俯角调整方法进行介绍。
1、调整服务区
假设某天线高50m、增益10dB、发射功率10w,在准平滑地形条件下,天线俯角与水平主方向覆盖距离的关系如下图所示。

如果待调整小区在蜂窝网的边缘,一般情况下为了尽量扩大覆盖服务面,天线俯角宜调至0~2°,当天线位置高于50m时天线俯角可调至2~4°。对于基站附近用户较多,手机密集,同时为了满足远郊重要用户能够使用车载移动台等场合,天线俯角可适当调至5°左右。
如果待调整小区不在蜂窝网边缘,应控制好覆盖范围,当覆盖范围过大时,可采用加大俯角的办法加以校正。当覆盖距离在8km以上或0.5km以下时,仅靠改变倾角来增减覆盖距离效果不佳。如果天线的俯角大于20°后,影响覆盖距离的因素可能已经变为垂直方向的旁瓣甚至反射波。
2、减轻忙小区话务负荷
通过增大忙小区天线俯角可以缩减覆盖面,而减小相邻小区天线俯角,可以扩大相邻小区覆盖面,与此同时修改交换机相关数据,即可达到减轻忙小区话务负荷的目的。
另外,如果切换带处于用户密集地区,当出现因越区切换失败而导致掉话率过高现象发生时,可采用类似方法将切换带调至用户稀散地带,如生产区、公园、广场、河面等地域。
3、消除同频干扰
对于定向小区结构的蜂窝网,同频小区天线在水平面上的角度是相同的。理论分析和实践表明,在加大定向天线俯角的过程中,水平面主方向的增益降幅要比其它方向大,因此通过改变俯角的措施消除同频干扰的方法要比单纯降低发射功率的方法更为科学。
抗同频道干扰的能力并不是单纯地与俯角的大小成正比,对于不同类型、厂家、天线架高和应用环境所采用的俯角不尽相同。例如,枣阳移动网采用的ETEL--37型天线,最佳抗同频干扰俯角在13°和23°左右。一般来说,调整不宜过大地影响原覆盖区,因此俯角调整量不宜过大,一般在±5°之间。实际上蜂窝网属于不规则混合小区组网方式,当俯角较大(12 °以上),而同基站其它扇区俯角较小时,必须考虑天线的旁瓣和后瓣对其它小区的影响,只有经反复对比调整,并用仪器检测,确定优化后的俯角值。值得注意的是在天线俯角调整时,必须拧紧定向天线上的调整螺杆,避免受大风等环境影响而使俯角发生缓慢变化。

工程中频率规划与优化方法研究
一、频率规划方法
频率规划是指在建网过程中,根据某地区的话务量分布分配相应的频率资源,以实现有效覆盖。在进行频率规划的过程中有以下几点因素需要确定:
1. 基站站型的确定
基站的站型是进行频率规划的前提,根据话务量和目标阻塞率可以确定基站的站型。通过话务量A,载频个数n,阻塞率E, 根据话务量A和阻塞率E,查询相应的表就可以得出某小区需要配置的频点个数n。

2. 频率规划方法的确定
首先是频率参数的设置,主要包括:
(1) 控制信道是否单独分配
控制信道是发送一些重要的控制信息和小区参数信息的,对控制信道的规划要求也比较高,在规划时应优先满足控制信道的同邻频干扰尽量小。一般情况下为了尽量避免控制信道和业务信道间的干扰,降低频率配置时的难度,常常采用控制信道的频率范围与业务信道的频率范围相互独立的方法。根据这样的原则需要给控制信道分配一段单独的频段,这个频段可以是连续的也可以是离散的,使用离散的频段主要是为了将控制信道的频点间隔起来,可以避免控制信道之间的干扰,但会存在控制信道和业务信道间的干扰;而使用连续的控制信道频段可以避免控制信道和业务信道之间的干扰,但是会增加控制信道之间的干扰。

Ⅶ 无线端优化,无线端数据优化怎么

GSM无线网络优化是一个闭环的处理流程,循环往复,不断提高。随着近两年优化工作的不断深入,各分公司的优化工作实际上已进入一个较深层次的分析优化阶段。即在保证充分利用现有网络资源的基础上,采取种种措施,解决网络存在的局部缺陷,最终达到无线覆盖全面无缝隙、接通率高、通话持续、话音清晰且不失真,保证网络容量满足用户高速发展的要求,让用户感到真正满意。GSM无线网络优化的常规方法网络优化的方法很多,在网络优化的初期,常通过对OMC-R数据的分析和路测的结果,制定网络调整的方案。在采用图1的流程经过几个循环后,网络质量有了大幅度的提高。但仅采用上述方法较难发现和解决问题,这时通常会结合用户投诉和CQT测试法来发现问题,结合信令跟踪分析法、话务统计分析法及路测分析法,分析查找问题的根源。在实际优化中,尤其以分析OMC-R话务统计报告,并辅以七号信令仪表进行A接口或Abis接口跟踪分析,作为网络优化最常用的手段。网络优化最重要的一步是如何发现问题,下面就是几种常用的方法:话务统计OMC话务统计是了解网络性能指标的一个重要途径,它反映了无线网络的实际运行状态。它是我们大多数网络优化基础数据的主要根据。通过对采集到的参数分类处理,形成便于分析网络质量的报告。通过话务统计报告中的各项指标(呼叫成功率、掉话率、切换成功率、每时隙话务量、无线信道可用率、话音信道阻塞率和信令信道的可用率、掉话率及阻塞率等),可以了解到无线基站的话务分布及变化情况,从而发现异常,并结合其它手段,可分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。同时还可以针对不同地区,制定统一的参数模板,以便更快地发现问题,并且通过调整特定小区或整个网络的参数等措施,使系统各小区的各项指标得到提高,从而提高全网的系统指标。DT在汽车以一定速度行驶的过程中,借助测试仪表、测试手机,对车内信号强度是否满足正常通话要求,是否存在拥塞、干扰、掉话等现象进行测试。通常在DT中根据需要设定每次呼叫的时长,分为长呼(时长不限,直到掉话为止)和短呼(一般取60秒左右,根据平均用户呼叫时长定)两种(可视情况调节时长),为保证测试的真实性,一般车速不应超过40公里/小时。路测分析法主要是分析空中接口的数据及测量覆盖,通过DT测试,可以了解:基站分布、覆盖情况,是否存在盲区;切换关系、切换次数、切换电平是否正常;下行链路是否有同频、邻频干扰;是否有孤岛效应;扇区是否错位;天线下倾角、方位角及天线高度是否合理;分析呼叫接通情况,找出呼叫不通及掉话的原因,为制定网络优化方案和实施网络优化提供依据。CQT(呼叫质量测试或定点网络质量测试):在服务区中选取多个测试点,进行一定数量的拨打呼叫,以用户的角度反映网络质量。测试点一般选择在通信比较集中的场合,如酒店、机场、车站、重要部门、写字楼、集会场所等。它是DT测试的重要补充手段。通常还可完成DT所无法测试的深度室内覆盖及高楼等无线信号较复杂地区的测试,是场强测试方法的一种简单形式。用户投诉通过用户投诉了解网络质量。尤其在网络优化进行到一定阶段时,通过路测或数据分析已较难发现网络中的个别问题,此时通过可能无处不在的用户通话所发现的问题,使我们进一步了解网络服务状况。结合场强测试或简单的CQT测试,我们就可以发现问题的根源。该方法具有发现问题及时,针对性强等特点。信令分析法信令分析主要是对有疑问的站点的A接口、Abis接口的数据进行跟踪分析。通过对A接口采集数据分析,可以发现切换局数据不全(遗漏切换关系)、信令负荷、硬件故障(找出有问题的中继或时隙)及话务量不均(部分数据定义错误、链路不畅等原因)等问题。通过对Abis接口数据进行收集分析,主要是对测量仪表记录的LAY3信令进行分析,同时根据信号质量分布图、频率干扰检测图、接收电平分布图,结合对信令信道或话音信道占用时长等的分析,可以找出上、下行链路路径损耗过大的问题,还可以发现小区覆盖情况、一些无线干扰及隐性硬件故障等问题。自动路测系统分析采用安装于移动车辆上的自动路测终端,可以全程监测道路覆盖及通信质量。由于该终端能够将大量的信令消息和测量报告自动传回监控中心,可以及时发现问题,并对出现问题的地点进行分析,具有很强的时效性。所采用的方法同5。在实际工作中,这几种方法都是相辅相成、互为印证的关系。GSM无线网络优化就是利用上述几种方法,围绕接通率、掉话率、拥塞率、话音质量和切换成功率及超闲小区、最坏小区等指标,通过性能统计测试→数据分析→制定实施优化方案→系统调整→重新制定优化目标→性能统计测试的螺旋式循环上升,达到网络质量明显改善的目的。优化介绍编辑简介随着网络优化的深入进行,现阶段GSM无线网络优化的目标已越来越关注于用户对网络的满意程度,力争使网络更加稳定和通畅,使网络的系统指标进一步提高,网络质量进一步完善。优化内容网络优化的工作流程具体包括五个方面:系统性能收集、数据分析及处理、制定网络优化方案、系统调整、重新制定网络优化目标。在网络优化时首先要通过OMC-R采集系统信息,还可通过用户申告、日常CQT测试和DT测试等信息完善问题的采集,了解用户对网络的意见及当前网络存在的缺陷,并对网络进行测试,收集网络运行的数据;然后对收集的数据进行分析及处理,找出问题发生的根源;根据数据分析处理的结果制定网络优化方案,并对网络进行系统调整。调整后再对系统进行信息收集,确定新的优化目标,周而复始直到问题解决,使网络进一步完善。原因分析通过前述的几种系统性收集的方法,一般均能发现问题的表象及大部分问题产生的原因。数据分析与处理是指对系统收集的信息进行全面的分析与处理,主要对电测结果结合小区设计数据库资料,包括基站设计资料、天线资料、频率规划表等。通过对数据的分析,可以发现网络中存在的影响运行质量的问题。如频率干扰、软硬件故障、天线方向角和俯仰角存在问题、小区参数设置不合理、无线覆盖不好、环境干扰、系统忙等。数据分析与处理的结果直接影响到网络运行的质量和下一步将采取的措施,因此是非常重要的一步。当然可以看出,它与第一步相辅相成,难以严格区分界限。实施方案制定网络优化方案是根据分析结果提出改善网络运行质量的具体实施方案。系统调整即实施网络优化,其基本内容包括设备的硬件调整(如天线的方位、俯仰调整,旁路合路器等)、小区参数调整、相邻小区切换参数调整、频率规划调整、话务量调整、天馈线参数调整、覆盖调整等或采用某些技术手段(更先进的功率控制算法、跳频技术、天线分集、更换电调或特型天线、新增微蜂窝、采用双层网结构、增加塔放等)。测试网络调整后的结果。主要包括场强覆盖测试、干扰测试、呼叫测试和话务统计。根据测试结果,重新制定网络优化目标。在网络运行质量已处于稳定、良好的阶段,需进一步提高指标,改善网络质量的深层次优化中出现的问题(用户投诉的处理,解决局部地区话音质量差的问题,具体事件的优化等等)或因新一轮建设所引发的问题。优化思路编辑建立在用户感知度上的网络优化面对的必然是对用户投诉问题的处理,一般有如下几种情况:呼叫未接通信令建立过程在手机收到经PCH(寻呼信道)发出的pagingrequest(寻呼请求)消息后,因SDCCH拥塞无法将pagingresponse(寻呼响应)消息发回而导致的呼损。对策:可通过调整SDCCH与TCH的比例,增加载频,调整BCC(基站色码)等措施减少SDCCH的拥塞。因手机退出服务造成不能分配占用SDCCH而导致的呼损。对策:对于盲区造成的脱网现象,可通过增加基站功率,增加天线高度来增加基站覆盖;对于BCCH频点受干扰造成的脱网现象,可通过改频、调整网络参数、天线下倾角等参数来排除干扰。鉴权过程因MSC与HLR、BSC间的信令问题,或MSC、HLR、BSC、手机在处理时失败等原因造成鉴权失败而导致的呼损。对策:由于在呼叫过程中鉴权并非必须的环节,且从安全角度考虑也不需要每次呼叫都鉴权,因此可以将经过多少次呼叫后鉴权一次的参数调大。加密过程因MSC、BSC或手机在加密处理时失败导致呼损。对策:目前对呼叫一般不做加密处理。从手机占上SDCCH后进而分配TCH前因无线原因(如RadioLinkFailure、硬件故障)使SDCCH掉话而导致的呼损。对策:通过路测场强分析和实际拨打分析,对于无线原因造成的如信号差、存在干扰等问题,采取相应的措施解决;对于硬件故障,采用更换相应的单元模块来解决。话音信道分配过程因无线分配TCH失败(如TCH拥塞,或手机已被MSC分配至某一TCH上,因某种原因占不上TCH而导致链路中断等原因)而导致的呼损。对策:对于TCH拥塞问题,可采用均衡话务量,调整相关小区服务范围的参数,启用定向重试功能等措施减少TCH的拥塞;对于占不上TCH的情况,一般是硬件故障,可通过拨打测试或分析话务统计中的CALLHOLDINGTIME参数进行故障定位,如某载频CALLHOLDINGTIME值小于10秒,则可断定此载频有故障。另外严重的同频干扰(如其它基站的BCCH与TCH同频)也会造成占不上TCH信道,可通过改频等措施解决。电话难打现象一般现象是较难占线、占线后很容易掉线等。这种情况首先应排除是否是TCH溢出的原因,如果TCH信道不足,则应增加信道板或通过增加微蜂窝或小区裂变的形式来解决。排除以上原因后,一般可以考虑是否是有较强的干扰存在。可以是相邻小区的同邻频干扰或其它无线信号干扰源,或是基站本身的时钟同步不稳。这种问题较为隐蔽,需通过仔细分析层三信令和周围基站信息才能得出结论。掉话现象掉话的原因几乎涉及网络优化的所有方面内容,尤其是在路测时发生的掉话,需要仔细分析。在路测时,需要对发生掉话的地段做电平和切换参数等诸多方面的分析。如果电平足够,多半是因为切换参数有问题或切入的小区无空闲信道。对话务较忙小区,可以让周围小区分担部分话务量。采用在保证不存在盲区的情况下,调整相关小区服务范围的参数,包括基站发射功率、天线参数(天线高度、方位角、俯仰角)、小区重选参数、切换参数及小区优先级设置的调整,以达到缩小拥塞小区的范围,并扩大周围一些相对较为空闲小区的服务范围。通过启用DirectedRetry(定向重试)功能,缓解小区的拥塞状况。上述措施仍不能满足要求的话,可通过实施紧急扩容载频的方法来解决。对大多采用空分天线远郊或近郊的基站,如果主、分集天线俯仰角不一致,也极易造成掉话。如果参数设置无误,则可能是有些点信号质量较差。对这些信号质量较差而引起的掉话,应通过硬件调整的方式增加主用频点来解决。局部区域话音质量较差在日常DT测试中,经常发现有很多微小的区域内,话音质量相当差、干扰大,信号弱或不稳定以及频繁切换和不断接入。这些地方往往是很多小区的交叠区、高山或湖面附近、许多高楼之间等。同样这种情况对全网的指标影响不明显,小区的话务统计报告也反映不出。这种现象一方面是由于频带资源有限,基站分布相对集中,频点复用度高,覆盖要求严格,必然不可避免的会产生局部的频率干扰。另一方面是由于在高层建筑林立的市区,手机接收的信号往往是基站发射信号经由不同的反射路径、散射路径、绕射路径的叠加,叠加的结果必然造成无线信号传播中的各种衰落及阴影效应,称之为多径干扰。此外,无线网络参数设置不合理也会造成上述现象。在测试中RXQUAL的值反映了话音质量的好坏,信号质量实际是指信号误码率,RXQUAL=3(误码率:0.8%至1.6%),RXQUAL=4(误码率:1.6%至3.2%),当网络采用跳频技术时,由于跳频增益的原因,RXQUAL=3时,通话质量尚可,当RXQUAL≥6时,基本无法通话。根据上述情况,通过对这些小区进行细致的场强覆盖测试和干扰测试,对场强覆盖测试数据进行分析,统计出RXLEV/RXQUAL之间对照表,如果某个小区域RXQUAL为6和7的采样统计数高而RXLEV大于-85dBm的采样数较高,一般可以认为该区域存在干扰。并在Neighbor-List中可分析出同频、邻频干扰频点。多径干扰如果直达路径信号(主信号)的接收电平与反射、散射等信号的接收电平差小于15dB,而且反射、散射等信号比主信号的时延超过4~5个GSM比特周期(1个比特周期=3.69μs),则可判断此区域存在较强的多径干扰。多径干扰造成的衰落与频点及所在位置有关。多径衰落可通过均衡器采用的纠错算法得以改善,但这种算法只在信号衰落时间小于纠错码字在交织中分布占用的时间时有效。采用跳频技术可以抑制多径干扰,因为跳频技术具有频率分集和干扰分集的特性。频率分集可以避免慢速移动的接收设备长时间处于阴影效应区,改善接收质量;而且可以充分利用均衡器的优点。干扰分集使所有的移动及基站接收设备所受干扰等级平均化。使产生干扰的几率大为减小,从而降低干扰程度。采用天线分集和智能天线阵,对信号的选择性增强,也能降低多径干扰。适当调整天线方位角,也可减小多径干扰。

Ⅷ 什么是蜂窝组网

常见的蜂窝网络类型有:GSM网络(有些国家叫pcs-1900)、CDMA网络、3G网络、FDMA、TDMA、PDC、TACS、AMPS等。

Ⅸ 无线网络优化的优化思路

建立在用户感知度上的网络优化面对的必然是对用户投诉问题的处理,一般有如下几种情况: 信令建立过程
在手机收到经PCH(寻呼信道)发出的pagingrequest(寻呼请求)消息后,因SDCCH拥塞无法将pagingresponse(寻呼响应)消息发回而导致的呼损。
对策:可通过调整SDCCH与TCH的比例,增加载频,调整BCC(基站色码)等措施减少SDCCH的拥塞。
因手机退出服务造成不能分配占用SDCCH而导致的呼损。
对策:对于盲区造成的脱网现象,可通过增加基站功率,增加天线高度来增加基站覆盖;对于BCCH频点受干扰造成的脱网现象,可通过改频、调整网络参数、天线下倾角等参数来排除干扰。
鉴权过程
因MSC与HLR、BSC间的信令问题,或MSC、HLR、BSC、手机在处理时失败等原因造成鉴权失败而导致的呼损。
对策:由于在呼叫过程中鉴权并非必须的环节,且从安全角度考虑也不需要每次呼叫都鉴权,因此可以将经过多少次呼叫后鉴权一次的参数调大。
加密过程
因MSC、BSC或手机在加密处理时失败导致呼损。
对策:目前对呼叫一般不做加密处理。
从手机占上SDCCH后进而分配TCH前
因无线原因(如RadioLinkFailure、硬件故障)使SDCCH掉话而导致的呼损。
对策:通过路测场强分析和实际拨打分析,对于无线原因造成的如信号差、存在干扰等问题,采取相应的措施解决;对于硬件故障,采用更换相应的单元模块来解决。
话音信道分配过程
因无线分配TCH失败(如TCH拥塞,或手机已被MSC分配至某一TCH上,因某种原因占不上TCH而导致链路中断等原因)而导致的呼损。
对策:对于TCH拥塞问题,可采用均衡话务量,调整相关小区服务范围的参数,启用定向重试功能等措施减少TCH的拥塞;对于占不上TCH的情况,一般是硬件故障,可通过拨打测试或分析话务统计中的CALLHOLDINGTIME参数进行故障定位,如某载频CALLHOLDINGTIME值小于10秒,则可断定此载频有故障。另外严重的同频干扰(如其它基站的BCCH与TCH同频)也会造成占不上TCH信道,可通过改频等措施解决。 一般现象是较难占线、占线后很容易掉线等。这种情况首先应排除是否是TCH溢出的原因,如果TCH信道不足,则应增加信道板或通过增加微蜂窝或小区裂变的形式来解决。
排除以上原因后,一般可以考虑是否是有较强的干扰存在。可以是相邻小区的同邻频干扰或其它无线信号干扰源,或是基站本身的时钟同步不稳。这种问题较为隐蔽,需通过仔细分析层三信令和周围基站信息才能得出结论。 掉话的原因几乎涉及网络优化的所有方面内容,尤其是在路测时发生的掉话,需要仔细分析。在路测时,需要对发生掉话的地段做电平和切换参数等诸多方面的分析。如果电平足够,多半是因为切换参数有问题或切入的小区无空闲信道。对话务较忙小区,可以让周围小区分担部分话务量。采用在保证不存在盲区的情况下,调整相关小区服务范围的参数,包括基站发射功率、天线参数(天线高度、方位角、俯仰角)、小区重选参数、切换参数及小区优先级设置的调整,以达到缩小拥塞小区的范围,并扩大周围一些相对较为空闲小区的服务范围。通过启用DirectedRetry(定向重试)功能,缓解小区的拥塞状况。上述措施仍不能满足要求的话,可通过实施紧急扩容载频的方法来解决。
对大多采用空分天线远郊或近郊的基站,如果主、分集天线俯仰角不一致,也极易造成掉话。如果参数设置无误,则可能是有些点信号质量较差。对这些信号质量较差而引起的掉话,应通过硬件调整的方式增加主用频点来解决。 在日常DT测试中,经常发现有很多微小的区域内,话音质量相当差、干扰大,信号弱或不稳定以及频繁切换和不断接入。这些地方往往是很多小区的交叠区、高山或湖面附近、许多高楼之间等。同样这种情况对全网的指标影响不明显,小区的话务统计报告也反映不出。这种现象一方面是由于频带资源有限,基站分布相对集中,频点复用度高,覆盖要求严格,必然不可避免的会产生局部的频率干扰。另一方面是由于在高层建筑林立的市区,手机接收的信号往往是基站发射信号经由不同的反射路径、散射路径、绕射路径的叠加,叠加的结果必然造成无线信号传播中的各种衰落及阴影效应,称之为多径干扰。此外,无线网络参数设置不合理也会造成上述现象。
在测试中RXQUAL的值反映了话音质量的好坏,信号质量实际是指信号误码率, RXQUAL=3(误码率:0.8%至1.6%),RXQUAL=4(误码率:1.6%至3.2%),当网络采用跳频技术时,由于跳频增益的原因,RXQUAL=3时,通话质量尚可,当RXQUAL≥6时,基本无法通话。
根据上述情况,通过对这些小区进行细致的场强覆盖测试和干扰测试,对场强覆盖测试数据进行分析,统计出RXLEV/RXQUAL之间对照表,如果某个小区域RXQUAL为6和7的采样统计数高而RXLEV大于-85dBm的采样数较高,一般可以认为该区域存在干扰。并在Neighbor-List中可分析出同频、邻频干扰频点。 如果直达路径信号(主信号)的接收电平与反射、散射等信号的接收电平差小于15dB,而且反射、散射等信号比主信号的时延超过4~5个GSM比特周期(1个比特周期=3.69μs),则可判断此区域存在较强的多径干扰。
多径干扰造成的衰落与频点及所在位置有关。多径衰落可通过均衡器采用的纠错算法得以改善,但这种算法只在信号衰落时间小于纠错码字在交织中分布占用的时间时有效。
采用跳频技术可以抑制多径干扰,因为跳频技术具有频率分集和干扰分集的特性。频率分集可以避免慢速移动的接收设备长时间处于阴影效应区,改善接收质量;而且可以充分利用均衡器的优点。干扰分集使所有的移动及基站接收设备所受干扰等级平均化。使产生干扰的几率大为减小,从而降低干扰程度。
采用天线分集和智能天线阵,对信号的选择性增强,也能降低多径干扰。
适当调整天线方位角,也可减小多径干扰。
若无线网络参数设置不合理,也会影响通话质量。如在DT测试中常常发现切换前话音质量较差,即RXQUAL较大(如5、6、7),而切换后,话音质量变得很好,RXQUAL很小(如0、1),而反方向行驶通过此区域时话音质量可能很好(RXQUAL为0、1),因为占用的服务小区不同。对于这种情况,是由于基于话音质量切换的门限值设置不合理。减小RXQUAL的切换门限值,如原先从RXQUAL≥4时才切换,改为RXQUAL≥3时就切换,可以提高许多区域的通话质量。因此,根据测试情况,找出最佳的切换地点,设置最佳切换参数,通过调整切换门限参数控制切换次数,通过修改相邻小区的切换关系提高通话质量。总之,根据场强测试可以优化系统参数。
值得一提的是,由于竞争的激烈及各运营商的越来越深化的要求,某些地方的运营商为完成任务,达到所谓的优化指标,随意调整放大一些对网络统计指标有贡献的参数,使网络看起来“质量很高”。然而,用户感觉到的仍是网络质量不好,从而招致更多用户的不满,这是不符合网络优化的宗旨的。
总之,网络优化是一项长期、艰巨的任务,进行网络优化的方法很多,有待于进一步探讨和完善。好在现在国内两大运营商都已充分认识到了这一点,网络质量也得到了迅速的提高,同时网络的经济效益也得到了充分发挥,既符合用户的利益又满足了运营商的要求,毫无疑问将是持续的双赢局面。
无线网络优化的目的就是对投入运行的网络进行参数采集、数据分析,找出影响网络质量的原因,通过技术手段或参数调整使网络达到最佳运行状态的方法,使网络资源获得最佳效益,同时了解网络的增长趋势,为扩容提供依据。
移动通信网络主要包括交换传输系统和无线基站系统两部分,其中无线部分具有诸多不确定因素,它对无线网络的影响很大,其性能优劣常常成为决定移动通信网好坏的决定性因素。当然,无线网络规划阶段考虑不到的问题如无线电波传播的不确定性(障碍物的阻碍等)、基础设施(新商业区、街道、城区的重新安排)变化、取决于地点和时间的话务负荷(如运动场)、话务要求、用户对服务质量的要求的增加,都涉及到网络优化工作。
当网络运营商发现网络中存在诸如覆盖不好、话音质量差、掉话、网络拥塞、切换成功率、未开通某些新功能等问题时,也需要对网络进行优化。通过不断的网络优化工作,使得呼叫建立时间减少、掉话次数减少、通话话音质量不断改善、网络拥有较高可用性和可靠性,改善小区覆盖、降低掉话率和拥塞率、提高接通率和切换率、减少用户投诉。
一、网络优化过程
网络优化是一个长期的过程,它贯穿于网络发展的全过程。只有不断提高网络的质量,才能获得移动用户的满意,吸引和发展更多的用户。 在日常网络优化过程中,可以通过OMC和路测发现问题,当然最通常的还是用户的反映。在网络性能经常性的跟踪检查中发现话统指标达不到要求、网络质量明显下降或来自的用户反映、当用户群改变或发生突发事件并对网络质量造成很大影响时、网络扩容时应对小区频率规划及容量进行核查等情形发生时,都要及时对网络做出优化。
进行网络优化的前提是做好数据的采集和分析工作,数据采集包括话统数据采集和路测数据采集两部分。 优化中评判网络性能的主要指标项包括网络接入性能数据、信道可用率、掉话率、接通率、拥塞率、话务量和切换成功率以及话统报告图表等,这些也是话统数据采集的重点。路测数据的采集主要通过路测设备,定性、定量、定位地测出网络无线下行的覆盖切换、质量现状等,通过对无线资源的地理化普查,确认网络现状与规划的差异,找出网络干扰、盲区地段,掉话和切换失败地段。然后,对路测采集的数据进行分析,如测试路线的地理位置信息、测试路线区域内各个基站的位置及基站间的距离等、各频点的场强分布、覆盖情况、接收信号电平和质量、6个邻小区状况、切换情况及Layer3消息的解码数据等,找出问题的所在从而解决方案。
网络优化的关键是进行网络分析与问题定位,网络问题主要从干扰、掉话、话务均衡和切换四个方面来进行分析。
干扰分析:GSM系统是干扰受限系统,干扰会使误码率增加,降低话音质量甚至发生掉话。一般规定误码率在3%左右,当误码率达8%~10%时话音质量就比较差了,如果误码率超出10%则话音质量不可容忍,无法听清。因此,通常对载波干扰设置了一定的门限,规定同频道载干比C/I≥9dB,邻频道载干比C/A≥-9dB(工程中另加3dB的余量)。 通话干扰的定位手段包括话统数据、话音质量差引起的掉话率、干扰带分布、用户反映、路测 ( RxQual )及CQT呼叫质量拨打测试。
掉话分析:掉话问题的定位主要通过话统数据、用户反映、路测 、无线场强测试、CQT呼叫质量拨打测试等方法,然后通过分析信号场强、信号干扰、参数设置(设置不当,切换参数、话务不均衡)等,找出掉话原因。
话务均衡分析: 话务均衡是指各小区载频应得到充分利用,避免某些小区拥塞,而另一些小区基本无话务的现象。通过话务均衡可以减小拥塞率、提高接通率,减少由于话务不均引起的掉话,使通信质量进一步改善提高。话务均衡问题的定位手段包括话统数据、话务量、接通率、拥塞率、掉话率、切换成功率、路测和用户反映。话务不均衡原因主要表现在:基站天线挂高、俯仰角、发射功率设置不合理,小区覆盖范围较大,导致该小区话务量较高,造成与其它基站话务量不均衡;由于地理原因,小区处于商业中心或繁华地段,手机用户多而造成该小区相对其它小区话务量高:小区参数,如允许接入最小电平等设置不合理而导致话务量不均衡;小区优先级参数设置未综合考虑。
话务均衡方法1:改变定向天线的下倾角、挂高,调整相应小区参数如基站的发射功率等,改变覆盖面的大小,以达到调节话务量的目的;对临时话务量的增加,可通过临时增加载频或增大发射功率,改变信号覆盖范围。
话务均衡方法2:改变小区载频数是话务量调节的常用方法之一。从话务量少的小区抽调载频到话务量高的小区;采用OVERLAY/UNDERLAY层次小区结构或增设微蜂窝基站,降低每信道话务量。
话务均衡方法3:核查允许接入最小电平值ACCMIN,通过小区覆盖范围的变化间接调整话务量。注意此值调整过大可能造成盲区,过小可能造成通话质量下降;根据现场重选测试,调整小区重选参数CRO;调整切换偏移和滞后参数,改变切换边界和切换带来实现话务分流;启用定向重试、负荷切换。
话务均衡方法4:双频网话务调整,在GSM900和GSM1800系统上采用分层小区结构;考虑小区所在层、优先级、层间切换门限、层间切换磁滞等参数的设置,使GSM1800小区能成功吸收双频手机的用户。
二、网络优化分析工具
为了有效解决网络优化问题,各厂家开发出网络优化辅助分析工具,可以作为话统分析和诊断分析的工具。
话统台统计结果是以数据表格的形式输出的,记录每个统计周期的计数点累计值,具有一定的缺陷:表格形式数据离散,数据变化趋势不明显;不提供每天平均指标的计算,手工计算平均指标花费大量工时;不能体现各种指标项间的相关关系,不便于数据分析。话统分析工具的作用就是将用户从繁重的手工工作中解脱出来,对原始话统数据进行自动处理,以满足用户需要、以方便用户分析的形式呈现出来。华为话统分析工具可以实现对异常值的过滤、异常问题的辅助诊断、日常统计项的直观显示、相关统计项的组合显示及完善的报表等功能,是理想的网络优化辅助工具。
网络诊断分析工具可以及时发现网络中隐藏的问题,通过地理化显示小区分布状况、各小区覆盖状况、各小区服务质量和历史数据的回放、网络利用率等,也可以查看小区属性、覆盖范围、利用率等资料,通过动态回放历史数据,掌握服务质量,将存在问题的小区直观地显示出来,以便进一步查看问题的详细报告。诊断分析工具可对小区的覆盖做出计算和评估,计算切换尝试次数(信号质量、时间提前量)、切换尝试次数、小区间切换成功率、切换时接收电平、接收质量、出小区、入小区切换比率、平均接收电平、接收质量等,分析出小区覆盖水平。另外,也可对小区干扰进行计算和评估,包括TCH信道在各干扰带中所占比率、SDCCH占用时无线链路断的次数、TCH占用时无线链路断的次数、未定义邻近小区平均信号强度、定义邻近小区平均信号强度、接收电平与接收质量不匹配、上下行不平衡、掉话时的电平和质量等。
三、应用案例
应用案例一:内蒙伊克昭盟东胜市双频网网络优
网络背景:东胜市全网为华为GSM双频网。
优化项目:话务均衡。
通过普查测试、邻区关系调整、话务均衡调整等优化操作,使得GSM1800有效合理分担GSM900的话务,保证了话务均衡,图1为优化前后网络指标对比图。
应用案例二:福建漳州云霄双频网络优
网络背景: 华为1800MHz与Nokia 900MHz设备共站址异种机型组建的双频网,市区1800MHz与900MHz共同覆盖,形成多层网,平均站距为700m,达到密集连续覆盖,建筑物密集且无规则,无线环境复杂。
优化项目: 调整1800话务吸收、降低掉话率、优化切换指标。
网络优化后,网络质量大大提高,图2为网络优化前后话务吸收情况,切换成功率达到平均97.5%,消除了乒乓效应。优化前忙时平均掉话率为0.60%,全天平均为0.62%。优化后忙时平均掉话率为0.33%,全天平均:0.37%。

Ⅹ 无线网络优化的优化介绍

通过前述的几种系统性收集的方法,一般均能发现问题的表象及大部分问题产生的原因。
数据分析与处理是指对系统收集的信息进行全面的分析与处理,主要对电测结果结合小区设计数据库资料,包括基站设计资料、天线资料、频率规划表等。通过对数据的分析,可以发现网络中存在的影响运行质量的问题。如频率干扰、软硬件故障、天线方向角和俯仰角存在问题、小区参数设置不合理、无线覆盖不好、环境干扰、系统忙等。数据分析与处理的结果直接影响到网络运行的质量和下一步将采取的措施,因此是非常重要的一步。当然可以看出,它与第一步相辅相成,难以严格区分界限。 制定网络优化方案是根据分析结果提出改善网络运行质量的具体实施方案。
系统调整即实施网络优化,其基本内容包括设备的硬件调整(如天线的方位、俯仰调整,旁路合路器等)、小区参数调整、相邻小区切换参数调整、频率规划调整、话务量调整、天馈线参数调整、覆盖调整等或采用某些技术手段(更先进的功率控制算法、跳频技术、天线分集、更换电调或特型天线、新增微蜂窝、采用双层网结构、增加塔放等)。
测试网络调整后的结果。主要包括场强覆盖测试、干扰测试、呼叫测试和话务统计。
根据测试结果,重新制定网络优化目标。在网络运行质量已处于稳定、良好的阶段,需进一步提高指标,改善网络质量的深层次优化中出现的问题(用户投诉的处理,解决局部地区话音质量差的问题,具体事件的优化等等)或因新一轮建设所引发的问题。

阅读全文

与无线网络优化蜂窝组网相关的资料

热点内容
苹果手机有网络显示却连不上网 浏览:688
如何终止正在训练的神经网络 浏览:556
下载一个路由器能连到农村网络吗 浏览:794
无线网络免费到期时间 浏览:727
有线网络无法连接认证服务器 浏览:474
网络营销价格多少 浏览:222
国家中小学网络云平台如何上课 浏览:722
oppo的手机移动网络不好怎么解决 浏览:929
手机外接网线还是网络差 浏览:976
中老年网络支付的额度区间建议为多少 浏览:252
互联网数据怎么转到移动网络里的 浏览:662
手机网络该如何设置 浏览:609
网络tql什么意思 浏览:188
b站移动网络下载 浏览:343
网络安全评价需要哪些资质 浏览:686
庆阳电信网络cetv4是哪个台 浏览:204
红米hm1支持什么网络 浏览:936
反感网络游戏有哪些 浏览:125
网络机顶盒软件的安装 浏览:102
网络最好的看视频软件 浏览:279

友情链接