導航:首頁 > 網路連接 > 計算機網路求監督碼

計算機網路求監督碼

發布時間:2022-09-11 15:54:33

A. 計算機網路CRC檢驗中為什麼選擇16或32位效驗碼,效率最高

循環冗餘校驗(CRC)是一種根據網路數據封包或電腦檔案等數據產生少數固定位數的一種散列函數,主要用來檢測或校驗數據傳輸或者保存後可能出現的錯誤。生成的數字在傳輸或者儲存之前計算出來並且附加到數據後面,然後接收方進行檢驗確定數據是否發生變化。一般來說,循環冗餘校驗的值都是32位的整數。由於本函數易於用二進制的電腦硬體使用、容易進行數學分析並且尤其善於檢測傳輸通道干擾引起的錯誤,因此獲得廣泛應用。它是由W.WesleyPeterson在他1961年發表的論文中披露[1]。{{noteTA|T=zh-hans:循環冗餘校驗;zh-hant:循環冗餘校驗;|1=zh-hans:循環冗餘校驗;zh-hant:循環冗餘校驗;}}'''循環冗餘校驗'''(CRC)是一種根據網路數據封包或[[電腦檔案]]等數據產生少數固定位數的一種[[散列函數]],主要用來檢測或校驗數據傳輸或者保存後可能出現的錯誤。生成的數字在傳輸或者儲存之前計算出來並且附加到數據後面,然後接收方進行檢驗確定數據是否發生變化。一般來說,循環冗餘校驗的值都是32位的整數。由於本函數易於用二進制的[[電腦硬體]]使用、容易進行數學分析並且尤其善於檢測傳輸通道干擾引起的錯誤,因此獲得廣泛應用。它是由[[W.WesleyPeterson]]在他1961年發表的論文中披露{{citejournal|author=Peterson,W.W.andBrown,D.T.|year=1961|month=January|title=CyclicCodesforErrorDetection|journal=ProceedingsoftheIRE|doi=10.1109/JRPROC.1961.287814|issn=0096-8390|volume=49|pages=228}}。==簡介==CRC「校驗和」是兩個位元數據流採用二進制除法(沒有進位,使用XOR異或來代替減法)相除所得到的余數。其中被除數是需要計算校驗和的信息數據流的二進製表示;除數是一個長度為n+1的預定義(短)的二進制數,通常用多項式的系數來表示。在做除法之前,要在信息數據之後先加上n個0.CRCa是基於[[有限域]]GF(2)([[同餘|關於2同餘]])的[[多項式環]]。簡單的來說,就是所有系數都為0或1(又叫做二進制)的多項式系數的集合,並且集合對於所有的代數操作都是封閉的。例如::(x^3+x)+(x+1)=x^3+2x+1\equivx^3+12會變成0,因為對系數的加法都會模2.乘法也是類似的::(x^2+x)(x+1)=x^3+2x^2+x\equivx^3+x我們同樣可以對多項式作除法並且得到商和余數。例如,如果我們用''x''3+''x''2+''x''除以''x''+1。我們會得到::\frac{(x^3+x^2+x)}{(x+1)}=(x^2+1)-\frac{1}{(x+1)}也就是說,:(x^3+x^2+x)=(x^2+1)(x+1)-1這里除法得到了商''x''2+1和余數-1,因為是奇數所以最後一位是1。字元串中的每一位其實就對應了這樣類型的多項式的系數。為了得到CRC,我們首先將其乘以x^{n},這里n是一個固定多項式的[[多項式的階|階]]數,然後再將其除以這個固定的多項式,余數的系數就是CRC。在上面的等式中,x^2+x+1表示了本來的信息位是111,x+1是所謂的'''鑰匙''',而余數1(也就是x^0)就是CRC.key的最高次為1,所以我們將原來的信息乘上x^1來得到x^3+x^2+x,也可視為原來的信息位補1個零成為1110。一般來說,其形式為::M(x)\cdotx^{n}=Q(x)\cdotK(x)+R(x)這里M(x)是原始的信息多項式。K(x)是n階的「鑰匙」多項式。M(x)\cdotx^{n}表示了將原始信息後面加上n個0。R(x)是余數多項式,既是CRC「校驗和」。在通訊中,發送者在原始的信息數據M後加上n位的R(替換本來附加的0)再發送。接收者收到M和R後,檢查M(x)\cdotx^{n}-R(x)是否能被K(x)整除。如果是,那麼接收者認為該信息是正確的。值得注意的是M(x)\cdotx^{n}-R(x)就是發送者所想要發送的數據。這個串又叫做''codeword''.CRCs經常被叫做「[[校驗和]]」,但是這樣的說法嚴格來說並不是准確的,因為技術上來說,校驗「和」是通過加法來計算的,而不是CRC這里的除法。「[[錯誤糾正編碼]]」常常和CRCs緊密相關,其語序糾正在傳輸過程中所產生的錯誤。這些編碼方式常常和數學原理緊密相關。==實現====變體==CRC有幾種不同的變體*shiftRegister可以逆向使用,這樣就需要檢測最低位的值,每次向右移動一位。這就要求polynomial生成逆向的數據位結果。''實際上這是最常用的一個變體。''*可以先將數據最高位讀到移位寄存器,也可以先讀最低位。在通訊協議中,為了保留CRC的[[突發錯誤]]檢測特性,通常按照[[物理層]]發送數據位的方式計算CRC。*為了檢查CRC,需要在全部的碼字上進行CRC計算,而不是僅僅計算消息的CRC並把它與CRC比較。如果結果是0,那麼就通過這項檢查。這是因為碼字M(x)\cdotx^{n}-R(x)=Q(x)\cdotK(x)可以被K(x)整除。*移位寄存器可以初始化成1而不是0。同樣,在用演算法處理之前,消息的最初n個數據位要取反。這是因為未經修改的CRC無法區分只有起始0的個數不同的兩條消息。而經過這樣的取反過程,CRC就可以正確地分辨這些消息了。*CRC在附加到消息數據流的時候可以進行取反。這樣,CRC的檢查可以用直接的方法計算消息的CRC、取反、然後與消息數據流中的CRC比較這個過程來完成,也可以通過計算全部的消息來完成。在後一種方法中,正確消息的結果不再是0,而是\sum_{i=n}^{2n-1}x^{i}除以K(x)得到的結果。這個結果叫作核驗多項式C(x),它的十六進製表示也叫作[[幻數]]。按照慣例,使用CRC-32多項式以及CRC-16-CCITT多項式時通常都要取反。CRC-32的核驗多項式是C(x)=x^{31}+x^{30}+x^{26}+x^{25}+x^{24}+x^{18}+x^{15}+x^{14}+x^{12}+x^{11}+x^{10}+x^8+x^6+x^5+x^4+x^3+x+1。==錯誤檢測能力==CRC的錯誤檢測能力依賴於關鍵多項式的階次以及所使用的特定關鍵多項式。''誤碼多項式''E(x)是接收到的消息碼字與正確消息碼字的''異或''結果。當且僅當誤碼多項式能夠被CRC多項式整除的時候CRC演算法無法檢查到錯誤。*由於CRC的計算基於除法,任何多項式都無法檢測出一組全為零的數據出現的錯誤或者前面丟失的零。但是,可以根據CRC的[[#變體|變體]]來解決這個問題。*所有隻有一個數據位的錯誤都可以被至少有兩個非零系數的任意多項式檢測到。誤碼多項式是x^k,並且x^k只能被i\lek的多項式x^i整除。*CRC可以檢測出所有間隔距離小於[[多項式階次]]的雙位錯誤,在這種情況下的誤碼多項式是E(x)=x^i+x^k=x^k\cdot(x^{i-k}+1),\;i>k。如上所述,x^k不能被CRC多項式整除,它得到一個x^{i-k}+1項。根據定義,滿足多項式整除x^{i-k}+1的{i-k}最小值就是多項是的階次。最高階次的多項式是[[本原多項式]],帶有二進制系數的n階多項式==CRC多項式規范==下面的表格略去了「初始值」、「反射值」以及「最終異或值」。*對於一些復雜的校驗和來說這些十六進制數值是很重要的,如CRC-32以及CRC-64。通常小於CRC-16的CRC不需要使用這些值。*通常可以通過改變這些值來得到各自不同的校驗和,但是校驗和演算法機制並沒有變化。CRC標准化問題*由於CRC-12有三種常用的形式,所以CRC-12的定義會有歧義*在應用的CRC-8的兩種形式都有數學上的缺陷。*據稱CRC-16與CRC-32至少有10種形式,但沒有一種在數學上是最優的。*同樣大小的CCITTCRC與ITUCRC不同,這個機構在不同時期定義了不同的校驗和。==常用CRC(按照ITU-IEEE規范)=={|class="wikitable"!名稱||多項式||表示法:正常或者翻轉|-|CRC-1||x+1(用途:硬體,也稱為[[奇偶校驗位]])||0x1or0x1(0x1)|-|CRC-5-CCITT||x^{5}+x^{3}+x+1([[ITU]]G.704標准)||0x15(0x??)|-|CRC-5-USB||x^{5}+x^{2}+1(用途:[[USB]]信令包)||0x05or0x14(0x9)|-|CRC-7||x^{7}+x^{3}+1(用途:通信系統)||0x09or0x48(0x11)|-|CRC-8-ATM||x^8+x^2+x+1(用途:ATMHEC)||0x07or0xE0(0xC1)|-|CRC-8-[[CCITT]]||x^8+x^7+x^3+x^2+1(用途:[[1-Wire]][[匯流排]])|||-|CRC-8-[[Dallas_Semiconctor|Dallas]]/[[Maxim_IC|Maxim]]||x^8+x^5+x^4+1(用途:[[1-Wire]][[bus]])||0x31or0x8C|-|CRC-8||x^8+x^7+x^6+x^4+x^2+1||0xEA(0x??)|-|CRC-10||x10+x9+x5+x4+x+1||0x233(0x????)|-|CRC-12||x^{12}+x^{11}+x^3+x^2+x+1(用途:通信系統)||0x80For0xF01(0xE03)|-|CRC-16-Fletcher||參見[[Fletcher'schecksum]]||用於[[Adler-32]]A&BCRC|-|CRC-16-CCITT||''x''16+''x''12+''x''5+1([[X25]],[[V.41]],[[Bluetooth]],[[PPP]],[[IrDA]])||0x1021or0x8408(0x0811)|-|CRC-16-[[IBM]]||''x''16+''x''15+''x''2+1||0x8005or0xA001(0x4003)|-|CRC-16-[[BBS]]||x16+x15+x10+x3(用途:[[XMODEM]]協議)||0x8408(0x????)|-|CRC-32-Adler||See[[Adler-32]]||參見[[Adler-32]]|-|CRC-32-MPEG2||See[[IEEE802.3]]||參見[[IEEE802.3]]|-|CRC-32-[[IEEE802.3]]||x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1||0x04C11DB7or0xEDB88320(0xDB710641)|-|CRC-32C(Castagnoli)||x^{32}+x^{28}+x^{27}+x^{26}+x^{25}+x^{23}+x^{22}+x^{20}+x^{19}+x^{18}+x^{14}+x^{13}+x^{11}+x^{10}+x^9+x^8+x^6+1||0x1EDC6F41or0x82F63B78(0x05EC76F1)|-|CRC-64-ISO||x^{64}+x^4+x^3+x+1(use:ISO3309)||(0xB000000000000001)|-|CRC-64-[[EcmaInternational|ECMA]]-182||x^{64}+x^{62}+x^{57}+x^{55}+x^{54}+x^{53}+x^{52}+x^{47}+x^{46}+x^{45}+x^{40}+x^{39}+x^{38}+x^{37}+x^{35}+x^{33}+x^{32}+x^{31}+x^{29}+x^{27}+x^{24}+x^{23}+x^{22}+x^{21}+x^{19}+x^{17}+x^{13}+x^{12}+x^{10}+x^9+x^7+x^4+x+1(asdescribedin[CRC16toCRC64collisionresearch]*[index.htm#SAR-PR-2006-05ReversingCRC–TheoryandPractice.]{{math-stub}}[[Category:校驗和演算法]][[bg:CRC]][[ca:Controlderendànciacíclica]][[cs:Cyklickýrendantnísoučet]][[de:ZyklischeRendanzprüfung]][[en:Cyclicrendancycheck]][[es:Controlderendanciacíclica]][[eu:CRC]][[fi:CRC]][[fr:Contrôlederedondancecyclique]][[he:בדיקתיתירותמחזורית]][[id:CRC]][[it:Cyclicrendancycheck]][[ja:巡迴冗長検査]][[ko:순환중복검사]][[nl:CyclicRendancyCheck]][[pl:CRC]][[pt:CRC]][[ru:Циклическийизбыточныйкод]][[simple:Cyclicrendancycheck]][[sk:Kontrolacyklickýmkódom]][[sv:CyclicRendancyCheck]][[vi:CRC]]

B. 計算機網路原理的計算題(CRC校驗和數據傳輸問題)

第一題:進行模2除法時被除數錯了,應該是M*2^4,不是M*2^5,因為多項式是4階的,在M後面添4個0

C. 計算機網路原理中求CRC校驗碼。

01100。演算法你可以用手算,或者用代碼計算,代碼分按位和按位元組。手算演算法是:多項式為101101你在信息的後面補5個0信息碼變為1101101100000這時開始用多項式對上面的信息碼進行異或操作,要打的話很麻煩。我只把沒一次運算的結果寫一下1:011011(注意,前面一位已經為零,這時,要在此數後面補一個數,也就是說,現在已經對8為信息碼操作了一位)移位以後變為110111。(此時的首位又為1,再與多項式異或,下面的類似)2:0110103:0110004:0111015:0101116:000011 注意此時的信息碼已經被操作了5次了,就是說還有3位沒有操作,這時把這個數左移3位就好了,因為他的前3位都為零,所以最後的crc碼為01100整個要發送的數據為11011011+01100中間算的可能有錯誤,開始看crc的時候可能會很難懂,看看代碼很不錯的

D. 關於計算機網路循環冗餘碼怎麼求求大神。、、

解出的R=0101(fcs)
輸出2^nM+fas=1001110111010101
唔感覺是這樣的

E. CRC演算法模擬 計算機網路基礎課程 高分求解 正解追加200

引言

CRC的全稱為Cyclic Rendancy Check,中文名稱為循環冗餘校驗。它是一類重要的線性分組碼,編碼和解碼方法簡單,檢錯和糾錯能力強,在通信領域廣泛地用於實現差錯控制。實際上,除數據通信外,CRC在其它很多領域也是大有用武之地的。例如我們讀軟盤上的文件,以及解壓一個ZIP文件時,偶爾會碰到「Bad CRC」錯誤,由此它在數據存儲方面的應用可略見一斑。

差錯控制理論是在代數理論基礎上建立起來的。這里我們著眼於介紹CRC的演算法與實現,對原理只能捎帶說明一下。若需要進一步了解線性碼、分組碼、循環碼、糾錯編碼等方面的原理,可以閱讀有關資料。

利用CRC進行檢錯的過程可簡單描述為:在發送端根據要傳送的k位二進制碼序列,以一定的規則產生一個校驗用的r位監督碼(CRC碼),附在原始信息後邊,構成一個新的二進制碼序列數共k+r位,然後發送出去。在接收端,根據信息碼和CRC碼之間所遵循的規則進行檢驗,以確定傳送中是否出錯。這個規則,在差錯控制理論中稱為「生成多項式」。

1 代數學的一般性演算法

在代數編碼理論中,將一個碼組表示為一個多項式,碼組中各碼元當作多項式的系數。例如 1100101 表示為
1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。

設編碼前的原始信息多項式為P(x),P(x)的最高冪次加1等於k;生成多項式為G(x),G(x)的最高冪次等於r;CRC多項式為R(x);編碼後的帶CRC的信息多項式為T(x)。

發送方編碼方法:將P(x)乘以xr(即對應的二進制碼序列左移r位),再除以G(x),所得余式即為R(x)。用公式表示為
T(x)=xrP(x)+R(x)

接收方解碼方法:將T(x)除以G(x),如果余數為0,則說明傳輸中無錯誤發生,否則說明傳輸有誤。

舉例來說,設信息碼為1100,生成多項式為1011,即P(x)=x3+x2,G(x)=x3+x+1,計算CRC的過程為

xrP(x) x3(x3+x2) x6+x5 x
-------- = ---------- = -------- = (x3+x2+x) + --------
G(x) x3+x+1 x3+x+1 x3+x+1

即 R(x)=x。注意到G(x)最高冪次r=3,得出CRC為010。

如果用豎式除法,計算過程為

1110
-------
1011 /1100000 (1100左移3位)
1011
----
1110
1011
-----
1010
1011
-----
0010
0000
----
010

因此,T(x)=(x6+x5)+(x)=x6+x5+x, 即 1100000+010=1100010

如果傳輸無誤,

T(x) x6+x5+x
------ = --------- = x3+x2+x,
G(x) x3+x+1

無余式。回頭看一下上面的豎式除法,如果被除數是1100010,顯然在商第三個1時,就能除盡。

上述推算過程,有助於我們理解CRC的概念。但直接編程來實現上面的演算法,不僅繁瑣,效率也不高。實際上在工程中不會直接這樣去計算和驗證CRC。

下表中列出了一些見於標準的CRC資料:

名稱 生成多項式 簡記式* 應用舉例
CRC-4 x4+x+1 ITU G.704
CRC-12 x12+x11+x3+x+1
CRC-16 x16+x12+x2+1 1005 IBM SDLC
CRC-ITU** x16+x12+x5+1 1021 ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS
CRC-32 x32+x26+x23+...+x2+x+1 04C11DB7 ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS
CRC-32c x32+x28+x27+...+x8+x6+1 1EDC6F41 SCTP
* 生成多項式的最高冪次項系數是固定的1,故在簡記式中,將最高的1統一去掉了,如04C11DB7實際上是104C11DB7。
** 前稱CRC-CCITT。ITU的前身是CCITT。

2 硬體電路的實現方法

多項式除法,可用除法電路來實現。除法電路的主體由一組移位寄存器和模2加法器(異或單元)組成。以CRC-ITU為例,它由16級移位寄存器和3個加法器組成,見下圖(編碼/解碼共用)。編碼、解碼前將各寄存器初始化為"1",信息位隨著時鍾移入。當信息位全部輸入後,從寄存器組輸出CRC結果。

3 比特型演算法

上面的CRC-ITU除法電路,完全可以用軟體來模擬。定義一個寄存器組,初始化為全"1"。依照電路圖,每輸入一個信息位,相當於一個時鍾脈沖到來,從高到低依次移位。移位前信息位與bit0相加產生臨時位,其中bit15移入臨時位,bit10、bit3還要加上臨時位。當全部信息位輸入完成後,從寄存器組取出它們的值,這就是CRC碼。

typedef unsigned char bit;
typedef unsigned char byte;
typedef unsigned short u16;

typedef union {
u16 val;
struct {
u16 bit0 : 1;
u16 bit1 : 1;
u16 bit2 : 1;
u16 bit3 : 1;
u16 bit4 : 1;
u16 bit5 : 1;
u16 bit6 : 1;
u16 bit7 : 1;
u16 bit8 : 1;
u16 bit9 : 1;
u16 bit10 : 1;
u16 bit11 : 1;
u16 bit12 : 1;
u16 bit13 : 1;
u16 bit14 : 1;
u16 bit15 : 1;
} bits;
} CRCREGS;

// 寄存器組
CRCREGS regs;

// 初始化CRC寄存器組:移位寄存器置為全"1"
void crcInitRegisters()
{
regs.val = 0xffff;
}

// CRC輸入一個bit
void crcInputBit(bit in)
{
bit a;

a = regs.bits.bit0 ^ in;

regs.bits.bit0 = regs.bits.bit1;
regs.bits.bit1 = regs.bits.bit2;
regs.bits.bit2 = regs.bits.bit3;
regs.bits.bit3 = regs.bits.bit4 ^ a;
regs.bits.bit4 = regs.bits.bit5;
regs.bits.bit5 = regs.bits.bit6;
regs.bits.bit6 = regs.bits.bit7;
regs.bits.bit7 = regs.bits.bit8;
regs.bits.bit8 = regs.bits.bit9;
regs.bits.bit9 = regs.bits.bit10;
regs.bits.bit10 = regs.bits.bit11 ^ a;
regs.bits.bit11 = regs.bits.bit12;
regs.bits.bit12 = regs.bits.bit13;
regs.bits.bit13 = regs.bits.bit14;
regs.bits.bit14 = regs.bits.bit15;
regs.bits.bit15 = a;
}

// 輸出CRC碼(寄存器組的值)
u16 crcGetRegisters()
{
return regs.val;
}
crcInputBit中一步一步的移位/異或操作,可以進行簡化:
void crcInputBit(bit in)
{
bit a;
a = regs.bits.bit0 ^ in;
regs.val >>= 1;
if(a) regs.val ^= 0x8408;
}

細心的話,可以發現0x8408和0x1021(CRC-ITU的簡記式)之間的關系。由於我們是從低到高輸出比特流的,將0x1021左右反轉就得到0x8408。將生成多項式寫成 G(x)=1+x5+x12+x16,是不是更好看一點?

下面是一個典型的PPP幀。最後兩個位元組稱為FCS(Frame Check Sequence),是前面11個位元組的CRC。

FF 03 C0 21 04 03 00 07 0D 03 06 D0 3A
我們來計算這個PPP幀的CRC,並驗證它。

byte ppp[13] = {0xFF, 0x03, 0xC0, 0x21, 0x04, 0x03, 0x00, 0x07, 0x0D, 0x03, 0x06, 0x00, 0x00};
int i,j;
u16 result;

/////////// 以下計算FCS

// 初始化
crcInitRegisters();

// 逐位輸入,每個位元組低位在先,不包括兩個FCS位元組
for(i = 0; i < 11; i++)
{
for(j = 0; j < 8; j++)
{
crcInputBit((ppp[i] >> j) & 1);
}
}

// 得到CRC:將寄存器組的值求反
result = ~crcGetRegisters();

// 填寫FCS,先低後高
ppp[11] = result & 0xff;
ppp[12] = (result >> 8) & 0xff;

/////////// 以下驗證FCS

// 初始化
crcInitRegisters();

// 逐位輸入,每個位元組低位在先,包括兩個FCS位元組
for(i = 0; i < 13; i++)
{
for(j = 0; j < 8; j++)
{
crcInputBit((ppp[i] >> j) & 1);
}
}

// 得到驗證結果
result = crcGetRegisters();

可以看到,計算出的CRC等於0x3AD0,與原來的FCS相同。驗證結果等於0。初始化為全"1",以及將寄存器組的值求反得到CRC,都是CRC-ITU的要求。事實上,不管初始化為全"1"還是全"0",計算CRC取反還是不取反,得到的驗證結果都是0。

4 位元組型演算法

比特型演算法逐位進行運算,效率比較低,不適用於高速通信的場合。數字通信系統(各種通信標准)一般是對一幀數據進行CRC校驗,而位元組是幀的基本單位。最常用的是一種按位元組查表的快速演算法。該演算法基於這樣一個事實:計算本位元組後的CRC碼,等於上一位元組余式CRC碼的低8位左移8位,加上上一位元組CRC右移8位和本位元組之和後所求得的CRC碼。如果我們把8位二進制序列數的CRC(共256個)全部計算出來,放在一個表裡 ,編碼時只要從表中查找對應的值進行處理即可。

CRC-ITU的計算演算法如下:
a.寄存器組初始化為全"1"(0xFFFF)。
b.寄存器組向右移動一個位元組。
c.剛移出的那個位元組與數據位元組進行異或運算,得出一個指向值表的索引。
d.索引所指的表值與寄存器組做異或運算。
f.數據指針加1,如果數據沒有全部處理完,則重復步驟b。
g.寄存器組取反,得到CRC,附加在數據之後。

CRC-ITU的驗證演算法如下:
a.寄存器組初始化為全"1"(0xFFFF)。
b.寄存器組向右移動一個位元組。
c.剛移出的那個位元組與數據位元組進行異或運算,得出一個指向值表的索引。
d.索引所指的表值與寄存器組做異或運算。
e.數據指針加1,如果數據沒有全部處理完,則重復步驟b (數據包括CRC的兩個位元組)。
f.寄存器組的值是否等於「Magic Value」(0xF0B8),若相等則通過,否則失敗。

下面是通用的CRC-ITU查找表以及計算和驗證CRC的C語言程序:

// CRC-ITU查找表
const u16 crctab16[] =
{
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78,
};

// 計算給定長度數據的16位CRC。
u16 GetCrc16(const byte* pData, int nLength)
{
u16 fcs = 0xffff; // 初始化

while(nLength>0)
{
fcs = (fcs >> 8) ^ crctab16[(fcs ^ *pData) & 0xff];
nLength--;
pData++;
}

return ~fcs; // 取反
}

// 檢查給定長度數據的16位CRC是否正確。
bool IsCrc16Good(const byte* pData, int nLength)
{
u16 fcs = 0xffff; // 初始化

while(nLength>0)
{
fcs = (fcs >> 8) ^ crctab16[(fcs ^ *pData) & 0xff];
nLength--;
pData++;
}

return (fcs == 0xf0b8); // 0xf0b8是CRC-ITU的"Magic Value"
}

使用位元組型演算法,前面出現的PPP幀FCS計算和驗證過程,可用下面的程序片斷實現:

byte ppp[13] = {0xFF, 0x03, 0xC0, 0x21, 0x04, 0x03, 0x00, 0x07, 0x0D, 0x03, 0x06, 0x00, 0x00};
u16 result;

// 計算CRC
result = GetCrc16(ppp, 11);

// 填寫FCS,先低後高
ppp[11] = result & 0xff;
ppp[12] = (result >> 8) & 0xff;

// 驗證FCS
if(IsCrc16Good(ppp, 13))
{
... ...
}

該例中數據長度為11,說明CRC計算並不要求數據2位元組或4位元組對齊。

至於查找表的生成演算法,以及CRC-32等其它CRC的演算法,可參考RFC 1661, RFC 3309等文檔。需要注意的是,雖然CRC演算法的本質是一樣的,但不同的協議、標准所規定的初始化、移位次序、驗證方法等可能有所差別。

結語

CRC是現代通信領域的重要技術之一。掌握CRC的演算法與實現方法,在通信系統的設計、通信協議的分析以及軟體保護等諸多方面,能發揮很大的作用。如在作者曾經設計的一個多串口數據傳輸系統中,每串口速率為460kbps,不加校驗時誤碼率大於10-6,加上簡單的奇偶校驗後性能改善不很明顯,利用CRC進行檢錯重傳,誤碼率降低至10-15以下,滿足了實際應用的要求。

F. 關於計算機網路的crc計算

我們知道,一台主機向另外一台主機發送報文的時候,需要一層層經過自己的協議棧進行數據封裝,到達最後一層(四層協議的網路介面層)時需要在幀尾部添加FCS校驗碼(通過CRC演算法得出)。當對端主機收到時,在接收端同樣通過CRC演算法進行驗證,確認傳輸過程中是否出現錯誤。它只能確認一個幀是否存在比特差錯,但沒有提供解決措施。


循環冗餘校驗的原理

G. 求解,計算機網路技術基礎詳細過程!

1. 在CRC校驗中。已知生成多項式是G(x)=x4+x3+1。要求寫出信息1011001的CRC校驗碼。 解:
生成多項式G(x)=11001,為5位,校驗余數取4位,按模2除法計算過程如下:
1101010 11001 10110010000
11001 11110
11001 011110 11001 011100 11001 1010 余數R(x)= 1010
CRC校驗碼=1011001 1010

2. 雙方採用CRC循環校驗碼進行通信,已知生成多項式為x4+x3+x+1,接收到碼字為10111010011。判斷該信息有無錯誤。 解:
依題意,生成多項式G(x)=11011,如果信息正確,則模2除法余數應為0
1100101 11011 10111010011 11011 11000
11011 11100 11011 11111 11011 100 結果余數R(x)= 100不為零所以結果有錯。

在一個帶寬為 3KHZ、沒有雜訊的信道,能夠達到的碼元速率極限值為6kbps 碼元速率是信道傳輸數據能力的極限,奈奎斯特(Nyquist)首先給出了無雜訊情況下碼元速率的極限值與信道帶寬的關系:B=2H (Baud)其中,H是信道的帶寬,也稱頻率范圍,即信道能傳輸的上、下限頻率的差值。由此可以推出表徵信道數據傳輸能力的奈奎斯特公式:C=2•H•log2N (bps)對於特定的信道,其碼元速率不可能超過信道帶寬的2倍,但若能提高每個碼元可能取的離散值的個數,則數據傳輸速率便可成倍提高。例如,普通電話線路的帶寬約為3kHz,則其碼元速率的極限值為6kBaud。若每個碼元可能取得離散值的個數為32(即N=32),則最大數據傳輸速率可達C=2*3k*log2 32=30kbps。
實際的信道總要受到各種雜訊的干擾,香農(Shannon)則進一步研究了受隨機雜訊干擾的信道的情況,給出了計算信道容量的香農公式: C=H*log2(1+S/N) (bps)其中,S表示信號功率,N為雜訊功率,由此可見,只要提高信道的信噪比,便可提高信道的最大數據傳輸速率
希望能幫到你

H. 計算機網路問題,急,,,

2017年12月13日星期三,

這里需要強調一點,生成多項式(generator polynomial)和多項式不是一個概念,這里需要注意。我個人的理解是你要進行幾位的CRC校驗,就需要幾位的生成多項式(generator polynomial),但還收到生成多項式(generator polynomial)的第一位必須為1的限制,因此生成的多項式還需要注意這一點。原始信息所對應的多項式和生成多項式(generator polynomial)不是一個概念。

首先,我們要知道,任何一串二進制數都可以用一個多項式表示:且這串二進制數的各位對應多項式的各冪次,多項式中假如有此冪次項(比如多項式匯中有冪次項x^2對應二進制串碼中從右至左的第三位二進制數一定為1.因為右數第一位的冪次項為x^0,右數第二位的冪次項為x^1),則對應二進制數串碼中此位置的1,無此冪次項對應0。

舉例:代碼1010111對應的多項式為x^6+x^4+x^2+x+1,若我們將缺失的冪次項補全的話就有x^6+(x^5)+x^4+(X^3)+x^2+x+1,又因為x^5和X^3所對應的二進制位為0,不記入多項式中,因此有x^6+x^4+x^2+x+1,就是表示 1010111這個串碼。

而多項式為x^5+x^3+x^2+x+1的完整多項式為x^5+(x^4)+x^3+x^2+x+1正好對應二進制串碼101111,而x^4對應的二進制串碼中右數第五位(左數第二位)為0,不記入多項式中,因此,101111可以使用多項式x^5+x^3+x^2+x+1來表示。

通過上述兩個多項式的例子,可以看出,當多項式中的冪次項所對應的那一位二進制為1時,多項式中的那一個冪次項存在,而當二進制串碼中的某位為0時,對應的多項式冪次項忽略不記錄,例如,10111 1因為從左向右第二位是0,因此對應的多項式分子x^4就沒有被記錄到多項式中,

書面的說法是:

多項式和二進制數有直接對應關系:X的最高冪次對應二進制數的最高位,以下各位對應多項式的各冪次,有此冪次項對應1,無此冪次項對應0。可以看出:X的最高冪次為R,轉換成對應的二進制數有R+1位,

我們現在來看題目中generator plynomial (生成多項式)is X^4+x^2+1,最高冪次是4,因此,其表示的二進制為(4+1=5)5位,

且通過crc的原理,我們知道,循環冗餘校驗碼(CRC)是由兩部分組拼接而成的,

第一部分是信息碼,

第二部分是校驗碼,

可得公式:

CRC=信息碼+校驗碼,

很明顯校驗碼是跟在信息碼之後的,所以,題目中1101011011中左數的那5位是真正傳輸的信息(信息碼),即actual bit string transmitted(實際傳輸的信息位流)是11010,而後面的5位(11011)是校驗碼,

接下來我們結合上面的內容來理解對CRC的定義:

循環冗餘校驗碼(CRC)的基本原理是:在K位信息碼後再拼接R位的校驗碼,整個編碼長度為N位,因此,這種編碼也叫(N,K)碼。對於一個給定的(N,K)碼,可以證明存在一個最高次冪為N-K=R的多項式G(x)。根據G(x)可以生成K位信息的校驗碼,而G(x)叫做這個CRC碼的生成多項式。 校驗碼的具體生成過程為:假設要發送的信息用多項式C(X)表示,將C(x)左移R位(可表示成C(x)*2^R),這樣C(x)的右邊就會空出R位,這就是校驗碼的位置。用 C(x)*2^R 除以生成多項式G(x)得到的余數就是校驗碼。

另一個定義:

利用CRC進行檢錯的過程可簡單描述為:在發送端根據要傳送的k位二進制碼序列,以一定的規則產生一個校驗用的r位監督碼(CRC碼),附在原始信息後邊,構成一個新的二進制碼序列數共k+r位,然後發送出去。在接收端,根據信息碼和CRC碼之間所遵循的規則進行檢驗,以確定傳送中是否出錯。這個規則,在差錯控制理論中稱為「生成多項式」。

再看另一個描述,在代數編碼理論中,將一個碼組表示為一個多項式,碼組中各碼元當作多項式的系數。例如 1100101 表示為1·x^6+1·x^5+0·x^4+0·x^3+1·x^2+0·x^1+1,即 x^6+x^5+x^2+1。

設,編碼前的原始信息多項式為P(x),P(x)的最高冪次加1等於k(這里的K就是整個原始信息的二進制編碼的長度,以上例1100101為例,此串二進制編碼的最高位對應的多項式冪次為6,根據定義得K=6+1=7,正好是此串二進制編碼的長度,);

設,生成多項式為G(x),G(x)的最高冪次等於r,這個r可以隨意指定,也就是r可以不等於K,但指定r時,必須滿足生成多項式G(x)最高位必須為1的條件,

設,CRC多項式為R(x)。:將P(x)乘以x^r(即對應的二進制碼序列左移r位),再除以G(x),所得余式即為R(x)。

設,編碼後的帶CRC的信息多項式為T(x)。:用公式表示為T(x)=x^r*P(x)+R(x),翻譯過來就是,編碼後的帶CRC校驗的多項式由左移了r位的原始信息P(x)後接CRC的校驗碼R(x)組成,

而在接收端,是使用T(x )去除G(x),若無余數,則表示接收正確。就是接收端使用接收到的信息T(x )去除和發送端約好的生成多項式G(x),若除盡沒有餘數則表示信息正確接收。

我們再來看本題,

題中給出已傳輸的信息為:1101011011,即T(x )=1101011011;

而generator polynomial 生成多項式是:x^4+x^2+1,即G(x)=10101;

那麼,我們來使用T(x )除以G(x)=110,根據上面的定義,我們知道,出現了沒有除盡的情況,有餘數,余數為110,則說明信息11010在傳遞過程出現了錯誤,而題目中給出,若將此信息串碼的左數第三位進行翻轉,則接收到的信息為:1111011011,那麼,

T(x )=1111011011,

則,再通過T(x )除以G(x)進行校驗運算後,得到余數1,沒有除盡

即T(x )除以G(x)=1,

所以沒有通過CRC校驗,此時,接收端能發現這個錯誤,

但是,如果我們將此串數據的左數第三位和最後一位同時翻轉,得到1111011010,那麼再經過T(x )除以G(x)的接收端校驗後,除盡了,余數為0,則,此時,因為T(x )除以G(x)=0,通過了接收端的校驗,因此,接收端並不能發現這個錯誤,以為是收到了正確的串碼:11110,但實際上我們發送的串碼是:11010,

最後,我們再來研究一下,T(x )是怎麼除G(x)的,實際上我們必須清楚,這里的除法實際上並不是我們傳統意義上的十進制除法,而是兩個二進制的「按位異或」(請注意每步運算都是先進行高位對齊的。)的演算法,在二進制數運算中,這被稱為模二除運算,

來看兩個例子,

【例一】假設使用的生成多項式是G(X)=X3+X+1。4位的原始報文為1010,求編碼後的報文。

解:

1、將生成多項式G(X)=X^3+X+1轉換成對應的二進制除數1011。

R=3,R就是生成多項式的最高次冪,

2、此題生成多項式有4位(R+1)(注意:通過對生成多項式計算所得的校驗碼為3位,因為,生成多項式的R為生成多項式的最高次冪,所以校驗碼位數是3位),要把原始報文C(X)【這里的C(X)就是1010】左移3(R)位變成1010 000

3、用生成多項式對應的二進制數對左移3位後的原始報文進行模2除(高位對齊),相當於按位異或:

1010000

1011

------------------

0001000, 請注意這里,通過第一次除法,也就是模2除(高位對齊)的運算,將兩個二進制代碼進行了高位對齊後的按位異或的操作後,得到0001000即1000,接下來,需要進行第二次除法,即使用第一步得到的二進制數1000去除1011【G(x)】,則有下面的式子,

1000

1011

------------------

0011,請注意,結果為0011,也可以寫成11,但是我們由上面得知,由生成多項式G(X)=X^3+X+1,已經確定了校驗位是3位,因此,

得到的余位011,所以最終編碼為:1010 011。


例二:

信息欄位代碼為: 1011001;對應的原始多項式P(x)=x6+x4+x3+1

假設生成多項式為:g(x)=x4+x3+1;則對應g(x)的代碼為: 11001,又因為g(x)最高次冪為4,因此可以確定校驗位是4位,

根據CRC給生成多項式g(x)定義的規則,將原始代碼整體左移4位,這樣在原始數據後面多出4位校驗位的位置,即x^4*P(x),得到:10110010000;

接下來使用10110010000去除以g(x),得到最終的余數1010,並與原始信息組成二進制串碼:1011001 1010發送出去,

接收方:使用相同的生成多項式進行校驗:接收到的欄位/生成碼(二進制除法)

如果能夠除盡,則正確,

給出余數(1010)的計算步驟:

除法沒有數學上的含義,而是採用計算機的模二除法,即除數和被除數做異或運算。進行異或運算時除數和被除數最高位對齊,按位異或。

10110010000

^11001

--------------------------

01111010000 ,這里進行第一次按位異或,得到01111010000,即1111010000,將1111010000再去除以11001,如下步驟,

1111010000

^11001

-------------------------

0011110000,進行了第二次模2除後,得到0011110000,即11110000,將

11110000去除11001,

11110000

^11001

--------------------------

00111000,第三次摸2除,得到00111000,即111000,用

111000去除11001,

111000

^11001

-------------------

001010,進行第四次模2除後,得到最終的余數,001010,即1010,

則四位CRC校驗碼就為:1010。


I. 已知信息碼元為15為線性分碼組,監督碼元怎麼求

使用二進制轉換。監督碼元—指經過差錯編碼後在信息碼元基礎上增加的冗餘碼元。在數字通信中常常用時間間隔相同的符號來表示一個二進制數字,這時使用二進制轉換信號碼為15碼元會產生間隔。而這個間隔被稱為監督碼元長度。

J. 常用的網路協議有哪些

常用的網路協議有TCP/IP協議、IPX/SPX協議、NetBEUI協議等。

1.TCP/IP協議
TCP/IP協議用得最多,只有TCP/IP協議允許與internet進行完全連接。現今流行的網路軟體和游戲大都支持TCP/IP協議。

2.IPX/SPX協議
IPX/SPX協議是Novell開發的專用於NetWare網路的協議,大部分可以聯機的游戲都支持IPX/SPX協議,例如星際、cs。雖然這些游戲都支持TCP/IP協議,但通過IPX/SPX協議更省事,不需要任何設置。IPX/SPX協議在區域網中的用途不大。它和TCP/IP協議的一個顯著不同是它不使用ip地址,而是使用mac地址。

為了能進行通信,規定每個終端都要將各自字元集中的字元先變換為標准字元集的字元後,才進入網路傳送,到達目的終端之後,再變換為該終端字元集的字元。當然,對於不相容終端,除了需變換字元集字元外還需轉換其他特性,如顯示格式、行長、行數、屏幕滾動方式等也需作相應的變換。

閱讀全文

與計算機網路求監督碼相關的資料

熱點內容
計算機網路工程二級學科是什麼 瀏覽:927
網路用語書被是什麼意思 瀏覽:881
手機網路玩游戲延遲不穩定 瀏覽:484
網路用語兔寶寶是什麼意思 瀏覽:735
連移動網路多少錢 瀏覽:683
怎麼保存wifi網路連接 瀏覽:802
uc網路異常請稍後重試 瀏覽:672
眾居網路科技是干什麼的 瀏覽:881
光榮使命賬號輸入網路連接錯誤 瀏覽:8
5g網路標准有哪些 瀏覽:175
中建信息網路安全手冊 瀏覽:31
無線網路設置過濾關了怎麼辦 瀏覽:198
學校網路認證登錄拒絕連接 瀏覽:896
智能寬頻無線網路 瀏覽:757
網路安全的背景 瀏覽:577
網路連接什麼叫無ip分配 瀏覽:847
顯示網路忙不能搶紅包是怎麼回事 瀏覽:618
環形網路可用什麼來等效 瀏覽:427
在網路上購票要去哪裡等車 瀏覽:228
網路安全法對集團 瀏覽:443

友情鏈接