『壹』 目前區域網常見的組網技術的主流技術什麼
目前區域網常見的組網技術的主流技術如下:『貳』 區域網採用了什麼技術
用以傳輸數據的介質,用以連接各種設備的拓撲結構,用以共享資源的介質控制方法。
區域網一般為一個部門或單位所有,建網、維護以及擴展等較容易,系統靈活性高,覆蓋的地理范圍較小,只在一個相對獨立的局部范圍內聯,如一座或集中的建築群內,使用專門鋪設的傳輸介質進行聯網,數據傳輸速率高10Mb/s~10Gb/s。
(2)最新的區域網網路技術有哪些擴展閱讀:
注意事項:
一般家庭無線網路都習慣使用DHCP服務來為網路中的客戶端動態分配IP,因為這樣配置方便簡單。這其實同樣存在安全隱患,在成員很固定的家庭網路中,建議為網路成員設備分配固定的IP地址,然後再在無線路由器上設定允許接入設備的IP地址列表。
通常每個無線網路都有一個服務區標識符(SSID),無線客戶端需要加入該網路的時候都需要有一個相同的SSID才行。一般情況下無線設備在出廠時都會設置一個默認的值,例如TP-LINK公司的設備SSID值就是TP-LINK。設置SSID值就是注意兩點:修改默認值和保持修改後的一致性即可。
『叄』 區域網的3個關鍵技術是什麼
區域網三個關鍵技術:網路拓撲、傳輸介質和介質訪問控制方法。
區域網的類型很多,若按網路使用的傳輸介質分類,可分為有線網和無線網;若按網路拓撲結構分類,可分為匯流排型、星型、環型、樹型、混合型等。
若按傳輸介質所使用的訪問控制方法分類,又可分為乙太網、令牌環網、FDDI網和無線區域網等。其中,乙太網是當前應用最普遍的區域網技術。
(3)最新的區域網網路技術有哪些擴展閱讀:
網路中各節點通過一條首尾相連的通信鏈路連接起來的一個閉合環形結構網。環形結構網路的結構也比較簡單,系統中各工作站地位相等。系統中通信設備和線路比較節省。
在網中信息設有固定方向單向流動,兩個工作站節點之間僅有一條通路,系統中無信道選擇問題;某個結點的故障將導致物理癱瘓。環網中,由於環路是封閉的,所以不便於擴充,系統響應延時長,且信息傳輸效率相對較低。
『肆』 組建區域網的網路技術有哪些
匯流排型拓撲:是一種基於多點連接的拓撲結構,所有的設備連接在共同的傳輸介質上。匯流排拓撲結構使用一條所有PC都可訪問的公共通道,每台PC只要連一條線纜即可但是它的缺點是所有的PC不得不共享線纜,優點是不會因為一條線路發生故障而使整個網路癱瘓。
環行拓撲:把每台PC連接起來,數據沿著環依次通過每台PC直接到達目的地,在環行結構中每台PC都與另兩台PC相連每台PC的介面適配器必須接收數據再傳往另一台一台出錯,整個網路會崩潰因為兩台PC之間都有電纜,所以能獲得好的性能。
樹型拓撲結構:把整個電纜連接成樹型,樹枝分層每個分至點都有一台計算機,數據依次往下傳優點是布局靈活但是故障檢測較為復雜,PC環不會影響全局。
星型拓撲結構:在中心放一台中心計算機,每個臂的端點放置一台PC,所有的數據包及報文通過中心計算機來通訊,除了中心機外每台PC僅有一條連接,這種結構需要大量的電纜,星型拓撲可以看成一層的樹型結構不需要多層PC的訪問權爭用。星型拓撲結構在網路布線中較為常見。
菊花鏈拓撲:類似於環行拓撲結構,但是中間有一對斷點
『伍』 常用的區域網傳輸技術有(給出任意三種)
在區域網中常用的傳輸介質有雙絞線、同軸電纜和光導纖維等。
一、雙絞線
雙絞線是由兩條外面被覆塑膠類絕緣材料、內含銅纜線,互相絕緣的雙線互相纏繞,絞合成螺旋狀的一種電纜線。雙絞線可減少發送中信號的衰減、減少串擾及雜訊、並改善了對外部電磁干擾的抑制能力。 它是由亞歷山大·格拉漢姆·貝爾 發明的。一百多年來,一直用於電話網。
二、同軸電纜
同軸電纜是一種電線及信號傳輸線,一般是由四層物料造成:最內里是一條導電銅線,線的外面有一層塑膠圍攏,絕緣體外面又有一層薄的網狀導電體,然後導電體外面是最外層的絕緣物料作為外皮。根據尺寸來分同軸電纜則有不同標准規格,從1/8英寸到9英寸直徑不等。
三、光纖維電纜
光導纖維電纜簡稱光纖電纜或光纜。隨著對數據傳輸速度的要求不斷提高,光纜的使用日益普遍。對於計算機網路來說,光纜具有無可比擬的優勢。
光纜由纖芯。包層和護套層組成。其中纖芯由玻璃或塑料製成,包層由玻璃製成,護套由塑料製成。
(5)最新的區域網網路技術有哪些擴展閱讀:
機理
區域網(LocalAreaNetwork,LAN),又稱內網。指覆蓋局部區域(如辦公室或樓層)的計算機網路。按照網路覆蓋的區域(距離)不同,其他的網路類型還包括個人網、城域網、廣域網等。
早期的區域網網路技術都是各不同廠家所專有,互不兼容。後來,電機電子工程師學會推動了區域網技術的標准化,由此產生了IEEE 802系列標准。這使得在建設區域網時可以選用不同廠家的設備,並能保證其兼容性。
這一系列標准覆蓋了雙絞線、同軸電纜、光纖和無線等多種傳輸介質和組網方式,並包括網路測試和管理的內容。隨著新技術的不斷出現,這一系列標准仍在不斷的更新變化之中。
乙太網(IEEE 802.3標准)是最常用的區域網組網方式。乙太網使用雙絞線作為傳輸介質。在沒有中繼的情況下,最遠可以覆蓋200米的范圍。最普及的乙太網類型數據傳輸速率為100Mb/s,更新的標准則支持1000Mb/s和10Gb/s的速率。
其他主要的區域網類型有令牌環和FDDI(光纖分布數字介面,IEEE 802.8)。令牌環網路採用同軸電纜作為傳輸介質,具有更好的抗干擾性;但是網路結構不能很容易的改變。FDDI採用光纖傳輸,網路帶寬大,適於用作連接多個區域網的骨幹網。
近兩年來,隨著802.11標準的制定,無線區域網的應用大為普及。這一標准採用2.4GHz 和5.8GHz 的頻段,數據傳輸速度最高可以達到300Mbps和866Mbps。
區域網標準定義了傳輸介質、編碼和介質訪問等底層(一二層)功能。要使數據通過復雜的網路結構傳輸到達目的地,還需要具有定址、路由和流量控制等功能的網路協議的支持。
TCP/IP(傳輸控制協議/互聯網路協議)是最普遍使用的區域網網路協議。它也是互聯網所使用的網路協議。其他常用的區域網協議包括,IPX、AppleTalk等。
『陸』 網路新技術有哪些
當前使用廣泛、最有發展前景的網路新技術:
新一代網際網路、IPv6、寬頻移動網際網路、寬頻接入新技術、10吉比特乙太網、寬頻智能網、網格計算、網路存儲、無線自組織網路、無線Mesh網路、無線感測器網路、家庭網路、智能代理、移動代理、全光網路、智能光網路、自動交換光網路、主動網路、下一代網路和軟交換等。
『柒』 區域網技術類型有哪些
一、區域網的特徵:
區域網分布范圍小,投資少,配置簡單等,具有如下特徵:
1.傳輸速率高:一般為1Mbps--20Mbps,光纖高速網可達100Mbps,1000MbpS
2.支持傳輸介質種類多。
3.通信處理一般由網卡完成。
4.傳輸質量好,誤碼率低。
5.有規則的拓撲結構。
二、區域網的組成:
區域網一般由伺服器,用戶工作站,傳輸介質四部分組成。
1.伺服器:
運行網路0S,提供硬碟、文件數據及列印機共享等服務功能,是網路控制的核心。
從應用來說較高配置的普通486以上的兼容機都可以用於文件伺服器,但從提高網路的整體性能,尤其是從網路的系統穩定性來說,還是選用專用伺服器為宜。
目前常見的NOS主要有Netware,Unix和Windows NT三種。
Netware:
流行版本V3.12,V4.11,V5.0,對硬體要求低,應用環境與DOS相似,技術完善,可靠,支持多種工作站和協議,適於區域網操作系統,作為文件伺服器,列印伺服器性能好。
Unix:一種典型的32位多用戶的NOS,主要應用於超級小型機,大型機上,目前常用版本有Unix SUR4.0。支持網路文件系統服務,提供數據等應用,功能強大,不易掌握,命令復雜,由AT&T和SCO公司推出。
Windows NT Server 4.0:
一種面向分布式圖形應用程序的完整平台系統,界面與Win95相似,易於安裝和管理,且集成了Internet網路管理工具,前景廣闊。
伺服器分為文件伺服器,列印伺服器,資料庫伺服器,在Internet網上,還有Web,FTP,E—mail等伺服器。
網路0S朝著能支持多種通信協議,多種網卡和工作站的方向發展。
2.工作站:可以有自己的0S,獨立工作;通過運行工作站網路軟體,訪問Server共享資源,常見有DOS工作站,Windows95工作站。
3.網卡:將工作站式伺服器連到網路上,實現資源共享和相互通信,數據轉換和電信號匹配。
網卡(NTC)的分類:
(1)速率:10Mbps,100Mbps
(2)匯流排類型:ISA/PCI
(3)傳輸介質介面:
單口:BNC(細纜)或RJ一45(雙絞線)
4.傳輸介質:目前常用的傳輸介質有雙絞線,同軸電纜,光纖等。
(1)雙絞線(TP):
將一對以上的雙絞線封裝在一個絕緣外套中,為了降低干擾,每對相互扭繞而成。分為非屏蔽雙絞線(UTP)和屏蔽雙絞線(STP).區域網中UTP分為3類,4類,5類和超5類四種。
以AMP公司為例:
3類:10Mbps,皮薄,皮上注「cat3』,箱上注「3類」,305米/箱,400元/箱
4類:網路中用的不多
5類:(超5類)100Mbps,10Mbps,皮厚,匝密,皮上注「cat5」,箱上注5類,305米/箱,600—700元/箱(每段100米,接4個中繼器,最大500米)
接線順序:
當線的一端從左到右的芯線順序依次為:白綠、綠、白橙、藍、白藍、橙、白棕、棕時,另一端從左到右的芯線順序則應當依次為:白橙、橙、白綠、藍、白藍、綠、白棕、棕。
當線的一端從左到右的芯線順序依次為:白橙、橙、白綠、藍、白藍、綠、白棕、棕時,另一端從左到右的芯線順序則應當依次為:白綠、綠、白橙、藍、白藍、橙、白棕、棕。
這種網線一般用在集線器(交換機)的級連、伺服器與集線器(交換機)的連接、對等網計算機的直接連接等情況下。
STP:內部與UTP相同,外包鋁箔,Apple,IBM公司網路產品要求使用STP雙絞線,速率高,價格貴。
(2)同軸電纜:
由一根空心的外圓柱導體和一根位於中心軸線的內導線組成,兩導體間用絕緣材料隔開。
按直徑分為粗纜和細纜。
粗纜:傳輸距離長,性能高但成本高,使用於大型區域網干線,連接時兩端需終接器。
A.粗纜與外部收發器相連。
B.收發器與網卡之間用AUI電纜相連。
C.網卡必須有AUI介面:每段500米,100個用戶,4個中繼器可達2500米,收發器之間最小2.5米,收發器電纜最大50米。
細纜:傳輸距離短,相對便宜,用T型頭,與BNC網卡相連,兩端安50歐終端電阻。
每段185米,4個中繼器,最大925米,每段30個用戶,T型頭之間最小0.5米。
按傳輸頻帶分為基帶和寬頻傳輸。
基帶:數字信號,信號占整個信道,同一時間內能傳送一種信號。
寬頻:傳送的是不同頻率的信號。
(3)光纖:
應用光學原理,由光發送機產生光束,將電信號變為光信號,再把光信號導入光纖,在另一端由光接收機接收光纖上傳來的光信號,並把它變為電信號,經解碼後再處理。分為單模光纖和多模光纖。絕緣保密性好。
單模光纖:由激光作光源,僅有一條光通路,傳輸距離長,2公里以上。
多模光纖:由二極體發光,低速短距離,2公里以內。
三、區域網的幾種工作模式:
1.專用伺服器結構:(Server—Baseb)
又稱為「工作站/文件伺服器」結構,由若乾颱微機工作站與一台或多台文件伺服器通過通信線路連接起來組成工作站存取伺服器文件,共享存儲設備。
文件伺服器自然以共享磁碟文件為主要目的。
對於一般的數據傳遞來說已經夠用了,但是當資料庫系統和其它復雜而被不斷增加的用戶使用的應用系統到來的時候,伺服器已經不能承擔這樣的任務了,因為隨著用戶的增多,為每個用戶服務的程序也增多,每個程序都是獨立運行的大文件,給用戶感覺極慢,因此產生了客戶機/伺服器模式。
2.客戶機/伺服器模式:(client/server)
其中一台或幾台較大的計算機集中進行共享資料庫的管理和存取,稱為伺服器,而將其它的應用處理工作分散到網路中其它微機上去做,構成分布式的處理系統,伺服器控制管理數據的能力己由文件管理方式上升為資料庫管理方式,因此,C/S由的伺服器也稱為資料庫伺服器,注重於數據定義及存取安全後備及還原,並發控制及事務管理,執行諸如選擇檢索和索引排序等資料庫管理功能,它有足夠的能力做到把通過其處理後用戶所需的那一部分數據而不是整個文件通過網路傳送到客戶機去,減輕了網路的傳輸負荷。C/S結構是資料庫技術的發展和普遍應用與區域網技術發展相結合的結果。
3.對等式網路:(Peer—to—Peer)
在拓撲結構上與專用Server與C/S相同。在對等式網路結構中,沒有專用伺服器
每一個工作站既可以起客戶機作用也可以起伺服器作用。
雖然目前的網卡、HUB和交換機都能提供100M甚至更寬的帶寬,但一個區域網如果配置不當,盡管配置的設備都非常高檔而網路速度仍不能如意;或者經常出現死機、打不開一個小文件或根本無法連通伺服器,特別是在一些設備檔次參差不齊的網路中這些現象更是時有發生。在區域網中恰當地進行配置,才能使網路性能盡可能地進行優化,最大限度地發揮網路設備、系統的性能。其實區域網也是由一些設備和系統軟體通過一種連接方式組成的,所以區域網的優化包括以下幾個方面:
設備優化。包括傳輸介質的優化、伺服器的優化、HUB與交換機的優化等。
軟體系統的優化。包括伺服器軟體的優化和工作站系統的優化。
布局的優化。包括布線和網路流量的控制。
設備優化篇
網線為什麼會影響區域網的優化?
網線看似非常普通,價格也非常低廉,但它對整個網路性能起著非常重要的作用,網線選擇不好、介面製作不恰當都會影響到網路性能的優化。
在配置網路設備過程中,網線(僅以網際網路中所使用的雙絞線為例)通常是人們最易忽略的,常常有人認為「網線」沒有什麼可考慮的,只要是雙絞線,或只要是5類雙絞線即可,其實不然。為了降低信號的干擾,雙絞線電纜中的每一線對都是由兩根絕緣的銅導線相互扭繞而成,而且同一電纜中的不同線對扭繞圈數也不一樣。在繞線方向上標准雙絞線電纜中的線對是按逆時針方向進行扭繞。但有些非正規廠商生產的電纜線為了簡化製造工藝,電纜中所有線對的扭繞密度相同,線對中兩根絕緣導線的扭繞密度不符合技術要求,還有線對的扭繞方向不符合要求。這些不良現象將會引起雙絞線的近端串擾(指UTP中兩線對之間的信號干擾程度),從而使傳輸距離達不到要求。雙絞線的扭繞度在生產中都有較嚴格的標准,實際選購時,在有條件的情況下可用一些專業設備進行測量,但一般用戶只能憑肉眼來觀察。需要說明的是,5類UTP中線對的扭繞度要比3類密,超5類要比5類密,這個密度一般用肉眼很難看出來。
如何選擇網線?
在為區域網選購線材時一般來說是選購5類或超5類網線,因為3、4類雙絞線一般是使用在10M/bps的網際網路中,而5類雙絞線能滿足現在日趨流行的100M/bps的網際網路,超5類雙絞線主要用於將來的千兆網上,但現在也普通應用於區域網中,因為價格方面比5類線貴不了多少,現在已有6類線了,一般用於ATM網路中,公司區域網中暫時還不推薦採用。
有些不良廠商經常會用3類、4類線的線材來冒充5類甚至超5類線,因此要注意選擇擇名牌產品,如AMP、LUCENT(原AT&T)、IBDN(加拿大北方電信)等。
這些線類如屬正規廠家生產則都在包裝的封皮上有標識,如3類線就用「3 cable」,5類線就用「5 cable」,而超5類線則一般表示為「5e(或5E)cable」,要注意看清楚。另外好的雙絞線較粗且較軟,所印字元很清晰;冒牌產品為了節約成本,通常較細且一般較硬,在包裹塑料皮上所印字元也較粗糙。
參考資料:http://www.enet.com.cn/eschool/includes/zhuanti/zt/lan/27.shtml
『捌』 當今區域網(LAN)的主流技術及其特點是什麼
一、傳輸方式
傳輸方式涉及無線區域網採用的傳輸媒體、選擇的頻段及調制方式。目前無線區域網採用的傳輸媒體主要有兩種,即微波與紅外線。採用微波作為傳輸媒體的無線區域網按調制方式不同,又可分為擴展頻譜方式與窄帶調制方式。
1、擴展頻譜方式
在擴展頻譜方式中,數據基帶信號的頻譜被擴展至幾倍~幾十倍再被搬移至射頻發射出去。這一做法雖然犧牲了頻帶帶寬,卻提高了通信系統的抗干擾能力和安全性。由於單位頻帶內的功率降低,對其它電子設備的干擾也減小了。採用擴展頻譜方式的無線區域網一般選擇所謂的ISM頻段,這里ISM分別取自Instrial、 Scientific及Medical的第一個字母。許多工業、科研和醫療設備輻射的能量集中於該頻段。歐美日等國家的無線管理機構分別設置了各自的ISM頻段。例如美國的ISM頻段由902~928MHz,2.4~2.484GHz, 5.725~5.850GHz三個頻段組成。如果發射功率及帶外輻射滿足美國聯邦通信委員會(FCC)的要求,則無需向FCC提出專門的申請即可使用這些ISM頻段。
2、窄帶調制方式
在窄帶調制方式中,數據基帶信號的頻譜不做任何擴展即被直接搬移到射頻發射出去。與擴展頻譜方式相比,窄帶調制方式佔用頻帶少,頻帶利用率高。採用窄帶調制方式的無線區域網一般選用專用頻段,需要經過國家無線電管理部門的許可方可使用。當然,也可選用ISM頻段,這樣可免去向無線電管理委員會申請。但帶來的問題是,當鄰近的儀器設備或通信設備也在使用這一頻段時,會嚴重影響通信質量,通信的可靠性無法得到保障。
3、紅外線方式
基於紅外線的傳輸技術最近幾年有了很大發展。目前廣泛使用的家電遙控器幾乎都是採用的紅外線傳輸技術。作為無線區域網的傳輸方式,紅外線方式的最大優點是這種傳輸方式不受無線電干擾,且紅外線的使用不受國家無線管理委員會的限制。然而,紅外線對非透明物體的透過性極差,這導致傳輸距離受限制。
二、網路拓撲
無線區域網的拓撲結構可歸結為兩類:無中心或叫對等式(PEER TO PEER)拓撲和有中心(HUB-BASED)拓撲。
1、無中心拓撲
無中心拓撲的網路要求網中任意兩個站點均可直接通信。採用這種拓撲結構的網路一般使用公用廣播信道,各站點都可競爭公用信道,而信道接入控制(MAC)協議大多採用CSMA(載波監測多址接入)類型的多址接入協議。這種結構的優點是網路抗毀性好、建網容易、且費用較低。但當網中用戶數(站點數)過多時,信道競爭成為限制網路性能的要害。並且為了滿足任意兩個站點可直接通信,網路中站點布局受環境限制較大。因此這種拓撲結構適用於用戶數相對較少的工作群規模。
2、有中心拓撲
在有中心拓撲結構中,要求一個無線站點充當中心站,所有站點對網路的訪問均由其控制。這樣,當網路業務量增大時網路吞吐性能及網路時延性能的惡化並不據烈。由於每個站點只需在中心站覆蓋范圍內就可與其它站點通信,故網路中心點布局受環境限制亦小。此外,中心站為接入有線主幹網提供了一個邏輯接入點。有中心網路拓撲結構的弱點是抗毀性差,中心站點的故障容易導致整個網路癱瘓,並且中心站點的引入增加了網路成本。
在實際應用中,無線區域網往往與有線主幹網路結合起來使用。這時,中心站點充當無線區域網與有線主幹網的轉接器。
三、網路介面
這涉及無線區域網中站點從哪一層接入網路系統。一般來講,網路介面可以選擇在OSI參考模型的物理層或數據鏈路層。所謂物理層介面指使用無線信道替代通常的有線信道,而物理層以上各層不變。這樣做的最大優點是上層的網路操作系統及相應的驅動程序可不做任何修改。這種介面方式在使用時一般做為有線區域網的集線器和無線轉發器以實現有線區域網間互聯或擴大有線區域網的覆蓋范圍。
另一種介面方法是從數據鏈路層接入網路。這種介面方法並不沿用有線區域網的MAC協議,而採用更適合無線傳輸環境的MAC協議。在實時,MAC層及其以下層對上層是透明的,配置相應的驅動程序來完成與上層的介面,這樣可保證現有的有線區域網操作系統或應用軟體可在無線區域網上正常運行。目前,大部分無線區域網廠商都採用數據鏈路層介面方法。
四、對移動計算網路的支持在無線區域網發展的初期階段,無線區域網的最大特徵是用無線媒體替代線纜,這樣可省去布線,網路安裝簡便。隨著筆記本型、膝上型、掌上型電腦個人數字助手(PDA)、以及攜帶型終端等的普及應用,支持移動計算網路的無線區域網就顯得尤為重要。
從移動通信的觀點來講,移動計算網路應提供以下幾個功能。小區內的站點可移動,同一小區內的站點可直接或經AP間接通信。不同小區內站點可經過網路接入點AP及主幹網進行通信。當某一站點由一個小區移動至另一個小區時,通過越區切換協議或演算法,該站點被切換至新的小區。在新的小區中該站點仍和在以前小區時一樣保持與外界的連接。小區中的站點可通過主幹網上的路由器訪問公共網或被公共網訪問。
五、無線區域網的應用環境
根據無線區域網的特點,其應用可分為兩類:一類作為半移動網路應用,一類作為全移動網路應用。
1.半移動應用
在半移動應用環境下,又可分為室內應用和室外應用。
2.室內應用
在室內應用下,無線區域網作為有線區域網的補充,與有線區域網並存。由於無線區域網的價格比有線區域網高,故在室內環境下,無線區域網在以下應用情況可發揮其無線特長:大型辦公室、車間; 超級市場、智能倉庫; 臨時辦公室、會議室; 證券市場等。
3.室外應用
在難於布線的室外環境下,無線區域網可充分發揮其高速率、組網靈活之優點。尤其在公共通信網不發達的狀態下,無線區域網可作為區域網(覆蓋范圍幾十公里)使用。下面列出幾種應用情況:城市建築群間通信; 學校校園網路; 工礦企業廠區自動化控制與管理網路; 銀行、金融證券城區網路; 城市交通信息網路; 礦山、水利、油田等區域網路; 港口、碼頭、江河湖壩區網路; 野外勘測、實驗等流動網路; 軍事、公安流動網路等。
4.全移動網路應用
無線區域網與有線主幹網構成移動計算網路。這種網路傳輸速率高、覆蓋面大,是一種可傳輸多媒體信息的個人通信網路。這是無線區域網的發展方向。
『玖』 區域網的種類有哪些
一、乙太網
乙太網最早是由Xerox(施樂)公司創建的,在1980年由DEC、Intel和Xerox三家公司聯合開發為一個標准。乙太網是應用最為廣泛的區域網,包括標准乙太網(10Mbps)、快速乙太網(100Mbps)、千兆乙太網(1000 Mbps)和10G乙太網,它們都符合IEEE802.3系列標准規范。
二、FDDI網
FDDI的英文全稱為「Fiber Distributed Data Interface」,中文名為「光纖分布式數據介面」,它是於80年代中期發展起來一項區域網技術,它提供的高速數據通信能力要高於當時的乙太網(10Mbps)和令牌網(4或16Mbps)的能力。
FDDI標准由ANSI X3T9.5標准委員會制訂,為繁忙網路上的高容量輸入輸出提供了一種訪問方法。FDDI技術同IBM的Tokenring技術相似,並具有LAN和Tokenring所缺乏的管理、控制和可靠性措施,FDDI支持長達2KM的多模光纖。
三、令牌環網
令牌環網是IBM公司於20世紀70年代發展的,現在這種網路比較少見。在老式的令牌環網中,數據傳輸速度為4Mbps或16Mbps,新型的快速令牌環網速度可達100Mbps。令牌環網的傳輸方法在物理上採用了星形拓撲結構,但邏輯上仍是環形拓撲結構。
四、ATM網
ATM的英文全稱為「asynchronous transfer mode」,中文名為「非同步傳輸模式」,它的開發始於70年代後期。ATM是一種較新型的單元交換技術,同乙太網、令牌環網、FDDI網路等使用可變長度包技術不同,ATM使用53位元組固定長度的單元進行交換。
五、無線區域網
無線區域網是目前最新,也是最為熱門的一種區域網,特別是自Intel推出首款自帶無線網路模塊的迅馳筆記本處理器以來。無線區域網與傳統的區域網主要不同之處就是傳輸介質不同,傳統區域網都是通過有形的傳輸介質進行連接的,如同軸電纜、雙絞線和光纖等,
而無線區域網則是採用空氣作為傳輸介質的。正因為它擺脫了有形傳輸介質的束縛,所以這種區域網的最大特點就是自由,只要在網路的覆蓋范圍內,可以在任何一個地方與伺服器及其它工作站連接,而不需要重新鋪設電纜。
『拾』 區域網技術要求主要有哪些
目前,計算機區域網常用的訪問控制方式有3種,分別是載波多路訪問/沖突檢測(csma/cd)、令牌環訪問控製法(token
ring)和令牌匯流排訪問控製法(toking
bus)。