Ⅰ 網路最大流演算法通常應用在什麼方面
首先是網路流中的一些定義:
V表示整個圖中的所有結點的集合.
E表示整個圖中所有邊的集合.
G = (V,E) ,表示整個圖.
s表示網路的源點,t表示網路的匯點.
對於每條邊(u,v),有一個容量c(u,v) (c(u,v)>=0),如果c(u,v)=0,則表示(u,v)不存在在網路中。相反,如果原網路中不存在邊(u,v),則令c(u,v)=0.
對於每條邊(u,v),有一個流量f(u,v).
一個簡單的例子.網路可以被想像成一些輸水的管道.括弧內右邊的數字表示管道的容量c,左邊的數字表示這條管道的當前流量f.
網路流的三個性質:
1、容量限制: f[u,v]<=c[u,v]
2、反對稱性:f[u,v] = - f[v,u]
3、流量平衡: 對於不是源點也不是匯點的任意結點,流入該結點的流量和等於流出該結點的流量和。
只要滿足這三個性質,就是一個合法的網路流.
最大流問題,就是求在滿足網路流性質的情況下,源點 s 到匯點 t 的最大流量。
求一個網路流的最大流有很多演算法 這里首先介紹 增廣路演算法(EK)
學習演算法之前首先看了解這個演算法中涉及到的幾個圖中的定義:
**殘量網路
為了更方便演算法的實現,一般根據原網路定義一個殘量網路。其中r(u,v)為殘量網路的容量。
r(u,v) = c(u,v) – f(u,v)
通俗地講:就是對於某一條邊(也稱弧),還能再有多少流量經過。
Gf 殘量網路,Ef 表示殘量網路的邊集.
這是上面圖的一個殘量網路。殘量網路(如果網路中一條邊的容量為0,則認為這條邊不在殘量網路中。
r(s,v1)=0,所以就不畫出來了。另外舉個例子:r(v1,s) = c(v1,s) – f(v1,s) = 0 – (-f(s,v1)) = f(s,v1) = 4.
其中像(v1,s)這樣的邊稱為後向弧,它表示從v1到s還可以增加4單位的流量。
但是從v1到s不是和原網路中的弧的方向相反嗎?顯然「從v1到s還可以增加4單位流量」這條信息毫無意義。那麼,有必要建立這些後向弧嗎?
顯然,第1個圖中的畫出來的不是一個最大流。
但是,如果我們把s -> v2 -> v1 -> t這條路徑經過的弧的流量都增加2,就得到了該網路的最大流。
注意到這條路徑經過了一條後向弧:(v2,v1)。
如果不設立後向弧,演算法就不能發現這條路徑。
**從本質上說,後向弧為演算法糾正自己所犯的錯誤提供了可能性,它允許演算法取消先前的錯誤的行為(讓2單位的流從v1流到v2)
注意,後向弧只是概念上的,在程序中後向弧與前向弧並無區別.
**增廣路
增廣路定義:在殘量網路中的一條從s通往t的路徑,其中任意一條弧(u,v),都有r[u,v]>0。
如圖綠色的即為一條增廣路。
看了這么多概念相信大家對增廣路演算法已經有大概的思路了吧。