導航:首頁 > 網路安全 > 如何從神經網路到演算法

如何從神經網路到演算法

發布時間:2022-05-18 12:47:08

⑴ 神經網路演算法是什麼

Introction
--------------------------------------------------------------------------------

神經網路是新技術領域中的一個時尚詞彙。很多人聽過這個詞,但很少人真正明白它是什麼。本文的目的是介紹所有關於神經網路的基本包括它的功能、一般結構、相關術語、類型及其應用。

「神經網路」這個詞實際是來自於生物學,而我們所指的神經網路正確的名稱應該是「人工神經網路(ANNs)」。在本文,我會同時使用這兩個互換的術語。

一個真正的神經網路是由數個至數十億個被稱為神經元的細胞(組成我們大腦的微小細胞)所組成,它們以不同方式連接而型成網路。人工神經網路就是嘗試模擬這種生物學上的體系結構及其操作。在這里有一個難題:我們對生物學上的神經網路知道的不多!因此,不同類型之間的神經網路體系結構有很大的不同,我們所知道的只是神經元基本的結構。

The neuron
--------------------------------------------------------------------------------

雖然已經確認在我們的大腦中有大約50至500種不同的神經元,但它們大部份都是基於基本神經元的特別細胞。基本神經元包含有synapses、soma、axon及dendrites。Synapses負責神經元之間的連接,它們不是直接物理上連接的,而是它們之間有一個很小的空隙允許電子訊號從一個神經元跳到另一個神經元。然後這些電子訊號會交給soma處理及以其內部電子訊號將處理結果傳遞給axon。而axon會將這些訊號分發給dendrites。最後,dendrites帶著這些訊號再交給其它的synapses,再繼續下一個循環。

如同生物學上的基本神經元,人工的神經網路也有基本的神經元。每個神經元有特定數量的輸入,也會為每個神經元設定權重(weight)。權重是對所輸入的資料的重要性的一個指標。然後,神經元會計算出權重合計值(net value),而權重合計值就是將所有輸入乘以它們的權重的合計。每個神經元都有它們各自的臨界值(threshold),而當權重合計值大於臨界值時,神經元會輸出1。相反,則輸出0。最後,輸出會被傳送給與該神經元連接的其它神經元繼續剩餘的計算。

Learning
--------------------------------------------------------------------------------

正如上述所寫,問題的核心是權重及臨界值是該如何設定的呢?世界上有很多不同的訓練方式,就如網路類型一樣多。但有些比較出名的包括back-propagation, delta rule及Kohonen訓練模式。

由於結構體系的不同,訓練的規則也不相同,但大部份的規則可以被分為二大類別 - 監管的及非監管的。監管方式的訓練規則需要「教師」告訴他們特定的輸入應該作出怎樣的輸出。然後訓練規則會調整所有需要的權重值(這是網路中是非常復雜的),而整個過程會重頭開始直至數據可以被網路正確的分析出來。監管方式的訓練模式包括有back-propagation及delta rule。非監管方式的規則無需教師,因為他們所產生的輸出會被進一步評估。

Architecture
--------------------------------------------------------------------------------

在神經網路中,遵守明確的規則一詞是最「模糊不清」的。因為有太多不同種類的網路,由簡單的布爾網路(Perceptrons),至復雜的自我調整網路(Kohonen),至熱動態性網路模型(Boltzmann machines)!而這些,都遵守一個網路體系結構的標准。

一個網路包括有多個神經元「層」,輸入層、隱蔽層及輸出層。輸入層負責接收輸入及分發到隱蔽層(因為用戶看不見這些層,所以見做隱蔽層)。這些隱蔽層負責所需的計算及輸出結果給輸出層,而用戶則可以看到最終結果。現在,為免混淆,不會在這里更深入的探討體系結構這一話題。對於不同神經網路的更多詳細資料可以看Generation5 essays

盡管我們討論過神經元、訓練及體系結構,但我們還不清楚神經網路實際做些什麼。

The Function of ANNs
--------------------------------------------------------------------------------

神經網路被設計為與圖案一起工作 - 它們可以被分為分類式或聯想式。分類式網路可以接受一組數,然後將其分類。例如ONR程序接受一個數字的影象而輸出這個數字。或者PPDA32程序接受一個坐標而將它分類成A類或B類(類別是由所提供的訓練決定的)。更多實際用途可以看Applications in the Military中的軍事雷達,該雷達可以分別出車輛或樹。

聯想模式接受一組數而輸出另一組。例如HIR程序接受一個『臟』圖像而輸出一個它所學過而最接近的一個圖像。聯想模式更可應用於復雜的應用程序,如簽名、面部、指紋識別等。

The Ups and Downs of Neural Networks
--------------------------------------------------------------------------------

神經網路在這個領域中有很多優點,使得它越來越流行。它在類型分類/識別方面非常出色。神經網路可以處理例外及不正常的輸入數據,這對於很多系統都很重要(例如雷達及聲波定位系統)。很多神經網路都是模仿生物神經網路的,即是他們仿照大腦的運作方式工作。神經網路也得助於神經系統科學的發展,使它可以像人類一樣准確地辨別物件而有電腦的速度!前途是光明的,但現在...

是的,神經網路也有些不好的地方。這通常都是因為缺乏足夠強大的硬體。神經網路的力量源自於以並行方式處理資訊,即是同時處理多項數據。因此,要一個串列的機器模擬並行處理是非常耗時的。

神經網路的另一個問題是對某一個問題構建網路所定義的條件不足 - 有太多因素需要考慮:訓練的演算法、體系結構、每層的神經元個數、有多少層、數據的表現等,還有其它更多因素。因此,隨著時間越來越重要,大部份公司不可能負擔重復的開發神經網路去有效地解決問題。

NN 神經網路,Neural Network
ANNs 人工神經網路,Artificial Neural Networks
neurons 神經元
synapses 神經鍵
self-organizing networks 自我調整網路
networks modelling thermodynamic properties 熱動態性網路模型

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
網格演算法我沒聽說過
好像只有網格計算這個詞

網格計算是伴隨著互聯網技術而迅速發展起來的,專門針對復雜科學計算的新型計算模式。這種計算模式是利用互聯網把分散在不同地理位置的電腦組織成一個「虛擬的超級計算機」,其中每一台參與計算的計算機就是一個「節點」,而整個計算是由成千上萬個「節點」組成的「一張網格」, 所以這種計算方式叫網格計算。這樣組織起來的「虛擬的超級計算機」有兩個優勢,一個是數據處理能力超強;另一個是能充分利用網上的閑置處理能力。簡單地講,網格是把整個網路整合成一台巨大的超級計算機,實現計算資源、存儲資源、數據資源、信息資源、知識資源、專家資源的全面共享。

⑵ 什麼是人工神經網路及其演算法實現方式

人工神經網路(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智慧領域興起的研究熱點。它從信息處理角度對人腦神經元網路進行抽象, 建立某種簡單模型,按不同的連接方式組成不同的網路。在工程與學術界也常直接簡稱為神經網路或類神經網路。神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。
最近十多年來,人工神經網路的研究工作不斷深入,已經取得了很大的進展,其在模式識別、智能機器人、自動控制、預測估計、生物、醫學、經濟等領域已成功地解決了許多現代計算機難以解決的實際問題,表現出了良好的智能特性。

⑶ rbf神經網路演算法是什麼

RBF神經網路演算法是由三層結構組成,輸入層至隱層為非線性的空間變換,一般選用徑向基函數的高斯函數進行運算;從隱層至輸出層為線性空間變換,即矩陣與矩陣之間的變換。

RBF神經網路進行數據運算時需要確認聚類中心點的位置及隱層至輸出層的權重。通常,選用K-means聚類演算法或最小正交二乘法對數據大量的進行訓練得出聚類中心矩陣和權重矩陣。

一般情況下,最小正交二乘法聚類中心點的位置是給定的,因此比較適合分布相對規律的數據。而K-means聚類演算法則會自主選取聚類中心,進行無監督分類學習,從而完成空間映射關系。

RBF網路特點

RBF網路能夠逼近任意非線性的函數(因為使用的是一個局部的激活函數。在中心點附近有最大的反應;越接近中心點則反應最大,遠離反應成指數遞減;就相當於每個神經元都對應不同的感知域)。

可以處理系統內難以解析的規律性,具有很好的泛化能力,並且具有較快的學習速度。

有很快的學習收斂速度,已成功應用於非線性函數逼近、時間序列分析、數據分類、模式識別、信息處理、圖像處理、系統建模、控制和故障診斷等。

當網路的一個或多個可調參數(權值或閾值)對任何一個輸出都有影響時,這樣的網路稱為全局逼近網路。由於對於每次輸入,網路上的每一個權值都要調整,從而導致全局逼近網路的學習速度很慢,比如BP網路。

⑷ 如何利用人工神經網路或遺傳演算法解決實際問題

來自<神經網路之家>nnetinfo

目前可以做的一般有:

  1. 分類.

  2. 函數擬合

  3. 壓縮.

  4. 圖象識別

等等, 其實說到底,所有的都能歸於第2點--函數擬合.

一般如果輸入與輸出是有強烈關系的,網路都能找得到這個關系.例如病人的特徵作為輸入,判斷這個是否為病人,一般都是可以的.業務背景知識強,才能把神經網路運用到實際中.

另外,還需要把實現問題轉換為數學問題的能力.

例如數字識別就是一個經典的應用.但直接把圖片放進去訓練是得不到識別效果的,因為維度太多了,而且信息冗餘量很大.

於是有人把圖片的特徵先自已提取出來:例如對角線與圖片上的數字有幾個交點等等,再把這些特徵作為輸入,數字類別向量作為輸出,放到網路中訓練.最後你再寫一個數字,提取這個數字的特徵,再把這特徵放進網路中的時候,它就能識別到你是哪個數字了.

另外,又有人用卷積神經網路去做數字識別.

還有人用深度網路去做,即先把原來圖片的信息用RBM網路進行壓縮,然後再訓練,效果就好了.

等等,其實很多問題都可以做,但前提是你要想到好的方式去運用神經網路.

⑸ 機器學習之人工神經網路演算法

機器學習中有一個重要的演算法,那就是人工神經網路演算法,聽到這個名稱相信大家能夠想到人體中的神經。其實這種演算法和人工神經有一點點相似。當然,這種演算法能夠解決很多的問題,因此在機器學習中有著很高的地位。下面我們就給大家介紹一下關於人工神經網路演算法的知識。
1.神經網路的來源
我們聽到神經網路的時候也時候近一段時間,其實神經網路出現有了一段時間了。神經網路的誕生起源於對大腦工作機理的研究。早期生物界學者們使用神經網路來模擬大腦。機器學習的學者們使用神經網路進行機器學習的實驗,發現在視覺與語音的識別上效果都相當好。在BP演算法誕生以後,神經網路的發展進入了一個熱潮。
2.神經網路的原理
那麼神經網路的學習機理是什麼?簡單來說,就是分解與整合。一個復雜的圖像變成了大量的細節進入神經元,神經元處理以後再進行整合,最後得出了看到的是正確的結論。這就是大腦視覺識別的機理,也是神經網路工作的機理。所以可以看出神經網路有很明顯的優點。
3.神經網路的邏輯架構
讓我們看一個簡單的神經網路的邏輯架構。在這個網路中,分成輸入層,隱藏層,和輸出層。輸入層負責接收信號,隱藏層負責對數據的分解與處理,最後的結果被整合到輸出層。每層中的一個圓代表一個處理單元,可以認為是模擬了一個神經元,若干個處理單元組成了一個層,若干個層再組成了一個網路,也就是」神經網路」。在神經網路中,每個處理單元事實上就是一個邏輯回歸模型,邏輯回歸模型接收上層的輸入,把模型的預測結果作為輸出傳輸到下一個層次。通過這樣的過程,神經網路可以完成非常復雜的非線性分類。
4.神經網路的應用。
圖像識別領域是神經網路中的一個著名應用,這個程序是一個基於多個隱層構建的神經網路。通過這個程序可以識別多種手寫數字,並且達到很高的識別精度與擁有較好的魯棒性。可以看出,隨著層次的不斷深入,越深的層次處理的細節越低。但是進入90年代,神經網路的發展進入了一個瓶頸期。其主要原因是盡管有BP演算法的加速,神經網路的訓練過程仍然很困難。因此90年代後期支持向量機演算法取代了神經網路的地位。
在這篇文章中我們大家介紹了關於神經網路的相關知識,具體的內容就是神經網路的起源、神經網路的原理、神經網路的邏輯架構和神經網路的應用,相信大家看到這里對神經網路知識有了一定的了解,希望這篇文章能夠幫助到大家。

⑹ 深入淺出BP神經網路演算法的原理

深入淺出BP神經網路演算法的原理
相信每位剛接觸神經網路的時候都會先碰到BP演算法的問題,如何形象快速地理解BP神經網路就是我們學習的高級樂趣了(畫外音:樂趣?你在跟我談樂趣?)
本篇博文就是要簡單粗暴地幫助各位童鞋快速入門採取BP演算法的神經網路。
BP神經網路是怎樣的一種定義?看這句話:一種按「誤差逆傳播演算法訓練」的多層前饋網路。
BP的思想就是:利用輸出後的誤差來估計輸出層前一層的誤差,再用這層誤差來估計更前一層誤差,如此獲取所有各層誤差估計。這里的誤差估計可以理解為某種偏導數,我們就是根據這種偏導數來調整各層的連接權值,再用調整後的連接權值重新計算輸出誤差。直到輸出的誤差達到符合的要求或者迭代次數溢出設定值。
說來說去,「誤差」這個詞說的很多嘛,說明這個演算法是不是跟誤差有很大的關系?
沒錯,BP的傳播對象就是「誤差」,傳播目的就是得到所有層的估計誤差。
它的學習規則是:使用最速下降法,通過反向傳播(就是一層一層往前傳)不斷調整網路的權值和閾值,最後使全局誤差系數最小。
它的學習本質就是:對各連接權值的動態調整。

拓撲結構如上圖:輸入層(input),隱藏層(hide layer),輸出層(output)
BP網路的優勢就是能學習和儲存大量的輸入輸出的關系,而不用事先指出這種數學關系。那麼它是如何學習的?
BP利用處處可導的激活函數來描述該層輸入與該層輸出的關系,常用S型函數δ來當作激活函數。

我們現在開始有監督的BP神經網路學習演算法:
1、正向傳播得到輸出層誤差e
=>輸入層輸入樣本=>各隱藏層=>輸出層
2、判斷是否反向傳播
=>若輸出層誤差與期望不符=>反向傳播
3、誤差反向傳播
=>誤差在各層顯示=>修正各層單元的權值,直到誤差減少到可接受程度。
演算法闡述起來比較簡單,接下來通過數學公式來認識BP的真實面目。
假設我們的網路結構是一個含有N個神經元的輸入層,含有P個神經元的隱層,含有Q個神經元的輸出層。

這些變數分別如下:

認識好以上變數後,開始計算:
一、用(-1,1)內的隨機數初始化誤差函數,並設定精度ε,最多迭代次數M
二、隨機選取第k個輸入樣本及對應的期望輸出

重復以下步驟至誤差達到要求:
三、計算隱含層各神經元的輸入和輸出

四、計算誤差函數e對輸出層各神經元的偏導數,根據輸出層期望輸出和實際輸出以及輸出層輸入等參數計算。

五、計算誤差函數對隱藏層各神經元的偏導數,根據後一層(這里即輸出層)的靈敏度(稍後介紹靈敏度)δo(k),後一層連接權值w,以及該層的輸入值等參數計算
六、利用第四步中的偏導數來修正輸出層連接權值

七、利用第五步中的偏導數來修正隱藏層連接權值

八、計算全局誤差(m個樣本,q個類別)

比較具體的計算方法介紹好了,接下來用比較簡潔的數學公式來大致地概括這個過程,相信看完上述的詳細步驟都會有些了解和領悟。
假設我們的神經網路是這樣的,此時有兩個隱藏層。
我們先來理解靈敏度是什麼?
看下面一個公式:

這個公式是誤差對b的一個偏導數,這個b是怎麼?它是一個基,靈敏度δ就是誤差對基的變化率,也就是導數。
因為?u/?b=1,所以?E/?b=?E/?u=δ,也就是說bias基的靈敏度?E/?b=δ等於誤差E對一個節點全部輸入u的導數?E/?u。
也可以認為這里的靈敏度等於誤差E對該層輸入的導數,注意了,這里的輸入是上圖U級別的輸入,即已經完成層與層權值計算後的輸入。
每一個隱藏層第l層的靈敏度為:

這里的「?」表示每個元素相乘,不懂的可與上面詳細公式對比理解
而輸出層的靈敏度計算方法不同,為:

而最後的修正權值為靈敏度乘以該層的輸入值,注意了,這里的輸入可是未曾乘以權值的輸入,即上圖的Xi級別。

對於每一個權值(W)ij都有一個特定的學習率ηIj,由演算法學習完成。

⑺ 神經網路的具體演算法

神經網路和粗集理論是智能信息處理的兩種重要的方法,其任務是從大量觀察和實驗數據中獲取知識、表達知識和推理決策規則。粗集理論是基於不可分辯性思想和知識簡化方法,從數據中推理邏輯規則,適合於數據簡化、數據相關性查找、發現數據模式、從數據中提取規則等。神經網路是利用非線性映射的思想和並行處理方法,用神經網路本身的結構表達輸入與輸出關聯知識的隱函數編碼,具有較強的並行處理、逼近和分類能力。在處理不準確、不完整的知識方面,粗集理論和神經網路都顯示出較強的適應能力,然而兩者處理信息的方法是不同的,粗集方法模擬人類的抽象邏輯思維,神經網路方法模擬形象直覺思維,具有很強的互補性。
首先,通過粗集理論方法減少信息表達的屬性數量,去掉冗餘信息,使訓練集簡化,減少神經網路系統的復雜性和訓練時間;其次利用神經網路優良的並行處理、逼近和分類能力來處理風險預警這類非線性問題,具有較強的容錯能力;再次,粗集理論在簡化知識的同時,很容易推理出決策規則,因而可以作為後續使用中的信息識別規則,將粗集得到的結果與神經網路得到的結果相比較,以便相互驗證;最後,粗集理論的方法和結果簡單易懂,而且以規則的形式給出,通過與神經網路結合,使神經網路也具有一定的解釋能力。因此,粗集理論與神經網路融合方法具有許多優點,非常適合處理諸如企業戰略風險預警這類非結構化、非線性的復雜問題。

關於輸入的問題--輸入模塊。
這一階段包括初始指標體系確定,根據所確定的指標體系而形成的數據採集系統及數據預處理。企業戰略風險的初始評價指標如下:
企業外部因素:政治環境(法律法規及其穩定性),經濟環境(社會總體收入水平,物價水平,經濟增長率),產業結構(進入產業障礙,競爭對手數量及集中程度),市場環境(市場大小)。
企業內部因素:企業盈利能力(銷售利潤率,企業利潤增長率),產品競爭能力(產品銷售率,市場佔有率),技術開發能力(技術開發費比率,企業專業技術人才比重),資金籌措能力(融資率),企業職工凝聚力(企業員工流動率),管理人才資源,信息資源;戰略本身的風險因素(戰略目標,戰略重點,戰略措施,戰略方針)。
本文所建立的預警指標系統是針對普遍意義上的企業,當該指標系統運用於實際企業時,需要對具體指標進行適當的增加或減少。因為各個企業有其具體的戰略目標、經營活動等特性。
計算處理模塊。這一模塊主要包括粗集處理部分和神經網路處理部分。
粗集處理階段。根據粗集的簡化規則及決策規則對數據進行約簡,構造神經網路的初始結構,便於神經網路的訓練。
企業戰略風險分析需要解決的問題是在保證對戰略風險狀態評價一致的情況下,選擇最少的特徵集,以便減少屬性維數、降低計算工作量和減少不確定因素的影響,粗集理論中的屬性約簡演算法可以很好地解決這個問題。

然後是輸出模塊~
該模塊是對將發生的戰略風險問題發出警報。
按照戰略風險大小強弱程度的不同,可將其分為三個層次。第一層次是輕微戰略風險,是損失較小、後果不甚明顯,對企業的戰略管理活動不構成重要影響的各類風險。這類風險一般情況下無礙大局,僅對企業形成局部和微小的傷害。第二層次是一般戰略風險,是損失適中、後果明顯但不構成致命性威脅的各類風險。這類風險的直接後果使企業遭受一定損失,並對其戰略管理的某些方面帶來較大的不利影響或留有一定後遺症。第三層次是致命性戰略風險,指損失較大,後果嚴重的風險。這類風險的直接後果往往會威脅企業的生存,導致重大損失,使之一時不能恢復或遭受破產。在實際操作中,每個企業應根據具體的狀況,將這三個層次以具體的數值表現出來。

下面回答你的問題:

總的來說,神經網路輸入的是初始指標體系;輸出的是風險。

你所說的風險應該說屬於輸出范疇,具體等級分為三級:無警、輕警、重警,並用綠、黃、紅三種顏色燈號表示。其中綠燈區表示企業綜合指標所反映的實際運行值與目標值基本一致,運行良好;黃燈區表示企業綜合指標所反映的實際運行值與目標值偏離較大,要引起企業的警惕。若採取一定的措施可轉為綠燈區,若不重視可在短期內轉為紅燈區;紅燈區則表示這種偏離超過企業接受的可能,並給企業帶來整體性的重大損失。例如:銷售利潤率極低、資產負債率過高,資源配置不合理、缺乏發展後勁等,必須找出原因,繼而採取有效措施,使企業的戰略管理活動始終處於「安全」的狀態。

希望以上答案能夠幫到你,祝你好運~

⑻ 機器學習演算法之神經網路

在學習了機器學習的相關知識以後,我們知道其中的演算法有很多種,比如回歸演算法、K近鄰演算法等等,這些都是需要大家掌握的演算法,而神經網路演算法是一個十分實用的演算法,在這篇文章中我們就給大家介紹一下機器學習演算法中的神經網路演算法知識。
那麼什麼是神經網路演算法呢?其實神經網路也稱之為人工神經網路,簡單就是ANN,而演算法是80年代機器學習界非常流行的演算法,不過在90年代中途衰落。現在,隨著深度學習的發展,神經網路再次出現在大家的視野中,重新成為最強大的機器學習演算法之一。而神經網路的誕生起源於對大腦工作機理的研究。早期生物界學者們使用神經網路來模擬大腦。機器學習的學者們使用神經網路進行機器學習的實驗,發現在視覺與語音的識別上效果都相當好。
那麼神經網路的學習機理是什麼呢?簡單來說,就是分解與整合。我們可以通過一個例子進行解答這個問題,比如說,我們可以把一個正方形分解為四個折線進入視覺處理的下一層中。四個神經元分別處理一個折線。每個折線再繼續被分解為兩條直線,每條直線再被分解為黑白兩個面。於是,一個復雜的圖像變成了大量的細節進入神經元,神經元處理以後再進行整合,最後得出了看到的是正方形的結論。這就是大腦視覺識別的機理,也是神經網路工作的機理。
那麼神經網路的邏輯架構是什麼呢?其實一個簡單的神經網路的邏輯架構分成輸入層,隱藏層,和輸出層。輸入層負責接收信號,隱藏層負責對數據的分解與處理,最後的結果被整合到輸出層。每層中的一個圓代表一個處理單元,可以認為是模擬了一個神經元,若干個處理單元組成了一個層,若干個層再組成了一個網路,這就是所謂的神經網路知識。
當然,在神經網路中,其實每一個處理單元事實上就是一個邏輯回歸模型,邏輯回歸模型接收上層的輸入,這樣,把模型的預測結果作為輸出傳輸到下一個層次。這些過程,神經網路可以完成非常復雜的非線性分類。在神經網路在圖像識別領域的一個著名應用,而這個程序叫做LeNet,是一個基於多個隱層構建的神經網路。通過LeNet可以識別多種手寫數字,並且達到很高的識別精度與擁有較好的魯棒性。這也是神經網路中最著名的應用。
在這篇文章中我們給大家介紹了很多關於神經網路的相關知識,通過這些知識我們可以更好地了解神經網路演算法。當然,我們要想了解機器學習還需要掌握更多的演算法。

⑼ 深度學習中的神經網路編寫需要設計到哪些演算法

涉及到的演算法有很多,比如反向傳播演算法、前向傳播、卷積演算法、矩陣遠點的演算法、梯度優化的演算法、評估演算法等等。單純用演算法來描述過於籠統,一般都是直接用對應的數學原理和公式去描述神經網路的編寫過程的。首先,定義網路結構,諸如神經元個數、隱層數目、權重、偏置等,其次根據梯度下降進行前向傳播,再次反向傳播更新梯度,最後是循環往復直到網路最優。

⑽ 神經網路演算法原理

4.2.1 概述

人工神經網路的研究與計算機的研究幾乎是同步發展的。1943年心理學家McCulloch和數學家Pitts合作提出了形式神經元的數學模型,20世紀50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函數的概念提出了神經網路的一種數學模型,1986年,Rumelhart及LeCun等學者提出了多層感知器的反向傳播演算法等。

神經網路技術在眾多研究者的努力下,理論上日趨完善,演算法種類不斷增加。目前,有關神經網路的理論研究成果很多,出版了不少有關基礎理論的著作,並且現在仍是全球非線性科學研究的熱點之一。

神經網路是一種通過模擬人的大腦神經結構去實現人腦智能活動功能的信息處理系統,它具有人腦的基本功能,但又不是人腦的真實寫照。它是人腦的一種抽象、簡化和模擬模型,故稱之為人工神經網路(邊肇祺,2000)。

人工神經元是神經網路的節點,是神經網路的最重要組成部分之一。目前,有關神經元的模型種類繁多,最常用最簡單的模型是由閾值函數、Sigmoid 函數構成的模型(圖 4-3)。

儲層特徵研究與預測

以上演算法是對每個樣本作權值修正,也可以對各個樣本計算δj後求和,按總誤差修正權值。

閱讀全文

與如何從神經網路到演算法相關的資料

熱點內容
電腦上什麼網路連接器好用 瀏覽:89
20年移動網路咋收費的 瀏覽:71
網路延遲怎麼解決一個軟體 瀏覽:665
陝西廣電網路路由器怎麼控制 瀏覽:54
工裝強電和網路弱電哪個好學 瀏覽:629
電腦開機直接卡死網路也沒 瀏覽:589
網路硬體設備是哪個 瀏覽:490
藍色無線網路接收器 瀏覽:262
復位電腦網路 瀏覽:834
電腦網路在系統里是哪個 瀏覽:833
店鋪電腦怎麼設置網路 瀏覽:733
電視網路電纜在哪個位置圖畫 瀏覽:583
網路機頂盒無線信號滿格 瀏覽:526
朝陽區的網路密碼 瀏覽:818
在哪裡可以查看網路連接記錄 瀏覽:149
如何看待網路語言對小學生的影響 瀏覽:109
小米手機更新完了網路特別差 瀏覽:128
tcl電視開機怎麼沒網路信號 瀏覽:210
施樂7835列印機怎麼連接網路 瀏覽:861
網路營銷技術轉讓售後保障 瀏覽:439

友情鏈接