A. 做集成 组网,选交换机主要看性能指标有哪些
把多台电脑组成网络,交换机是必不可少的配件。可是现在市场上交换机各式各样、品牌众多,同时价格也从百元、数百元到数千元不等。用户如何选择适合自己使用的交换机呢?又如何来判断交换机的好坏呢?那就需要注册交换机的各项性能指标,通过各项性能指标来判断、选择交换机。下面笔者就交换机的各项性能指标进行全面的解析。
一、交换机类型
交换机类型包括机架式交换机与固定配置式带/不带扩展槽交换机。机架式交换机是一种插槽式的交换机,该类交换机的扩展性较好,可以支持不同的网络类型,但其价格较贵;固定配置式带扩展槽交换机是一种有固定端口数并带少量扩展槽的交换机,这种交换机在支持固定端口类型网络的基础上,还可以支持其它类型的网络,价格居中;固定配置式不带扩展槽交换机仅支持一种类型的网络,但同时价格也是最便宜的。
二、端口
端口指的是交换机的接口数量及端口类型,交换机通常分为16口、24口或更多端口数,一般来说端口数量越多,其价格就会越高。端口类型一般有多个RJ-45口,还会提供一个UP-Link口,用来实现交换设备的级联,另外有的端口还支持MDI/MDIX自动跳线功能,通过该功能可以在级联交换设备时自动按照适当的线序连接,无须进行手工配置。
三、传输速率
现在市场上交换机主要分为百兆与千兆交换机两种,百兆交换机主要以10/100Mbps自适应交换机为主,能够通过网络自动判断、自适应运行,如果是一般公司或是家庭局域网的话,相信百兆交换机就能够满足用户的需求了。当然,有条件的用户也可以选择100/1000Mbps自适应交换机,以适应未来网络升级的需要。
四、传输模式
目前的交换机一般都支持全/半双工自适应模式,通过网络自行适应传输模式。全双工指可以同时接收和发送数据,数据流是双向的,用来提高网络传输的效率,半双工模式指不能同时接收和发送数据,要么只能接收数据,要发只能发送数据,数据流是单向的。
五、是否支持网管
网管是指网络管理员通过网络管理程序对网络上的资源进行集中化的管理,包括配管理、性能和记账管理、问题管理、操作管理和变化管理等。一般交换机厂商会提供管理软件或第三方管理软件来远程管理交换机,现在常见的网管类型包括:IBM网络管理(Netview)、HP Openview、Sun Solstice Domain Manager、Rmon管理、Snmp管理、基于WEB管理等,网络管理界面分为命令行方式(CLI)与图形用户界面(GUI)方式,不同的管理程序反映了该设备的可管理性及可操作性。
六、交换方式
目前交换机采用的交换方式主要有“存储转发”与“直通转发”两种,存储转发指的是在交换机接收到全部数据包后再决定如何转发,可以检测数据包的错误、支持不同速度的输入、输出端口的交换,不过数据处理时延时较长。直通转发是指在交换机收到整个帧之前就已经开始转发数据,这样可以减少延时,但由于直接转发所有的完整数据包和错误数据包,使得给交换网络带来了许多垃圾通信包。低端的交换机一般只是支持一种交换方式,使用直通转发或存储转发,如今大部分交换产品支持存储转发技术,而直通转发技术适用于网络链路质量较好,错误数据包较少的网络环境中。
七、背板吞吐量
又称作背板带宽,是指交换机接口处理器和数据总线之间所能吞吐的最大数据量,交换机的背板带宽越高,其所能处理数据的能力就会越强,如两台同样是16口的10/100Mbps自适应的交换机,在同样的端口带宽与延迟时间的情况下,背板带宽宽的交换机传输速率就会越快。一般5口与8口交换机的背板带宽都在1Gbps至3.2Gbps之间。背板吞吐量越大的交换机,其价格会越高。
八、支持的网络类型
交换机支持的网络类型是由其交换机的类型来决定的,一般情况下固定配置式不带扩展槽交换机仅支持一种类型的网络,是按需定制的。机架式交换机和固定式配置带扩展槽交换机可支持一种以上的网络类型,如支持以太网、快速以太网、千兆以太网、ATM、令牌环及FDDI网络等,一台交换机支持的网络类型越多,其可用性、可扩展性就会越强,同时价格也会越昂贵。
九、安全性及VLAN支持
网络发全性越来越受到人们的重视,交换机可以在底层把非法的客户隔离在网络之外,网络安全一般是能过MAC地址过滤或将MAC地址与固定端口绑定的方法来实现的,同时VLAN也是强化网络管理,保护网络安全的强有力手段。VLAN将局域网上的一组设备配置成好象在同一线路上进行通信,而实际上它们处于不同的网段,一个VLAN是一个独立的广播域,可以有效的防止广播风暴,由于VLAN是基于逻辑连接而不是物理连接,因此配置十分灵活,一个广播域可以是一组任意选定的MAC地址组成的虚拟网段,这样网络中工作组就可以突破共享网络中的地理位置限制,而是根据管理功能来划分。现在交换机是否支持VLAN已成为衡量其性能好坏的重要参数。
十、冗余支持
交换机在运行过程中可能会出现不同的故障,为了能够使用交换机正常运行,所以是否支持冗余也是其重要的指标,当有一个部件出现问题时,其它部件能够接着工作,而不影响设备的继续运转,冗余组件一般包括:管理卡、交换结构、接口模块、电源、冷却系统、机箱风扇等等。另外对于提供关键服务的管理引擎及交换阵列模块,不仅要求冗余,还要求这些部分具有“自动切换”的特性,以保证设备冗余的完整性,当有一块这样的部件失效时,冗余部件能够接替工作,以保障设备的可靠性。
一般来说,在选购交换机时只要根据这十个指标进行,一定能够买到最符合自己使用的设备了
在网上搜的,满意否??分!!!!
B. 决定一个ip地址性能有哪些指标
另外,IP网运营商为更有效地吸引大客户,往往与其签署业务等级协议(SLA),而签署SLA的关键前提就是要清楚地掌握自己网络的实际运行性能。因此,对现有互联网性能进行准确到位的分析,是目前国内外各家互联网运营商普遍关心的问题。
15
网络技术 《邮电规划》2004年第2期
1 业务质量与网络性能
1.1 业务质量与网络性能的定义
要更为客观地评估IP网络性能,首先 应明确两个目前在业界时常被混淆的概念:业务质量和网络性能。
——业务质量(QoS)
今天的电信业,QoS一词使用的频率非常高,但没有给出一个QoS准确的定义,或往往阐述得不够全面、准确,甚至在一些ITU-T文献或建议中也时常出现这种状况。
业务质量QoS全称Quality of Service,根据ISO9000的定义,“质量是指满足特定需求的一系列固有特性的程度”。
而在电信领域,ITU-T在E.800建议中明确定义QoS为“能够决定用户使用该种业务满意程度的业务性能的综合结果”。
——网络性能(NP)
所谓网络性能,从业务提供者的观点而言,是指一个网路可被定义、被测量及被控制以达到满意的业务质量的特征。 1.2 业务质量与网络性能的关系
从两者的定义可看出,业务质量和网络性能是两个角度的概念,业务质量从用户对业务的实际使用感受出发,描述业务的使用性能。而网络性能是从Operator角度制定的衡量网络实际运行状况的参数指标体系。
? 网络性能反映网络元素的本质状况,而业务质量是网络运行状况的外在表象;
? 网络性能可描述整个网络端到端的特性,也可描述特定网段的特性,而业务质量只是描述从业务接入点得到的用户感受;
? 网络性能对业务质量有很大影响,互联网用户在使用互联网业务时所穿越的不同网络的网络性能组合及其在时间上的分布规律,在很大程度上决定了该业务的质量;
? 可以通过测量具体的网络性能指标对网络进行评估,而业务质量除依靠指标进
16
行衡量外,往往还依赖于用户的主观感受。
2 IP网性能参数
2.1 IP网常用性能参数
· IP包传输时延(IPTD)
定义为IP包穿过一个基本段或网络段集合所经历的时间,与该包传送成功与否无关。
——平均IP包传输时延(Mean IPTD):指一个数据流中所有IP包传送时延的算术平均值。
· IP包时延变化(IPDV)
两点间IP包时延变化有3种定义: ——原定义:端到端两点间IP包时延变化(vk)是IP包K通过源节点SRC(MP1)和目的节点DST(MP2)的实际时延(xk)与通过相同节点间定义的参考IP包传送时延(d1,2)的差,即:vk=xk-d1,2。
——替代定义1:在一段较短的测量时间间隔内,最大IPTD与最小IPTD的差值。
IPDV=IPTDmax-IPTDmin ——替代定义2:
IPDV=IPTDupper-IPTDmin
其中:
——IPTDupper是评估间隔内IPTD的1-10-3
百分位值
——IPTDmin是评估间隔内IPTD的最小值
IP包时延变化参数非常重要。在数据包传送应用中,利用IP包时延变化范围的信息可以避免出现节点缓冲的溢出和读空;IP包时延变化会引起TCP层重传定时器门限的增高,也可能引起数据包重传的时延或造成没有必要的数据包重传。
· IP包误差率(IPER)
是错误IP包传送结果与成功IP包传送加错误IP包传送结果之和的比值。
· IP包丢失率(IPLR)
《邮电规划》2004年第2期 网络技术
是丢失的IP包传送结果与所有IP包的比值。
· 虚假IP包率(SPR)
一个出口节点的虚假IP包率指在一个特定时间间隔内在该节点上观测到的虚假IP包数量除以该时间间隔。
·IP网络的流量参数(Flow Related Parameters-FRP)
——IP包吞吐量(IPPT)
出口节点的IP包吞吐量等于一个特定时间间隔内在该节点上观测到的所有成功IP包数量除以该时间间隔。
出口节点的基于字节IP包吞吐量等于一个特定时间间隔内在该节点上观测到的成功IP包中所有字节数量除以该时间间隔。 2.2 IP网性能指标
· QoS等级说明
一定范围的IP网性能参数组合构成一种QoS等级。用户的QoS等级与用户IP包的传送距离和网络的复杂度有关。根据不同业务和应用的需要,用户可以请求和得到不同QoS等级的服务。
IP业务的QoS等级按应用、节点机制和网络技术可划分为6大类。
——基于字节的IP包吞吐量(IPOT)
不同的QoS等级,对于IP网NP参数的指标要求也各有差异。
· IP网的端到端性能参数目标参考值
以测量点为边界的端到端(不包含用户驻地网)IP网络性能指标见表2。实际用户享受到的服务性能一般会优于表2的规定。
注:1.表中规定的所有值都是临时的,今后将根据实际运营经验调整这些指标;
2.某些应用(如MPEG-2)要求IPLR < 5 x 10。 表2是ITU-T所定义的参考指标,而各
个运营商往往是根据自己网络所开展的主
-5
17
网络技术 《邮电规划》2004年第2期
要业务等因素,制定适合自己的网络性能指标,其指标往往高于以上指标的要求,因此用户能够得到更为优质的服务。 2.3 IP网性能指标与网络结构的关系
正如上文所述,IP网网络性能可以是端到端的指标,也可以是某个特定网段的指标。由于IP网络是由众多的区域性网络互联而成的,而这些网络可能是由不同的运营商进行维护和管理的,端到端的网络特性往往不能很好地加以控制和约束,因此需要相应的指标对这些网络分别进行评估。
目前国内互联网上的业务包括国际业务,国内网间业务和运营商网内业务。针对不同的应用,其端到端的网络性能指标会被分配到不同的网段上。网段包含单运营商网络、网间链路、接入链路。甚至在全国性运
营商网内,也可按骨干网、省网、本地网等进行划分。
实际上,运营商不必严格按照ITU-T建议的网络模型分配端到端指标,重要的是对自己网上主要业务的跨网情况、流向特性作出正确判断。
另外,在计算具体参数指标时,必须考虑链路的物理距离,通常运营商可将实际长度适度放大,以提高网络的实际使用性能。放大幅度自己掌握,一般距离越短,倍数越大。 2.4 国外运营商IP网络性能指标
· 性能参数
国外IP运营商建设经营IP网络较早,其运维经验较中国同行更丰富些,因此有许多可借鉴的地方。表3是国外IP网络运营商选取的网络性能参数及其测量的方法。
可见,不同的运营商由于其业务重点不同、用户群差异,所以心的网络性能的侧重
18
面和细节也有所不同,致使它们采用不同的网络性能考评体系来评估网络的运行质量。
《邮电规划》2004年第2期 网络技术
· SLA指标
在对于自己网络充分了解的基础上,各 个运营商制定了与大客户的SLA指标,参见表4。从表4可看出,国外用户作为关心的网络指标是时延、丢包率和可用性,从另一个侧面也反映出互联网运营商所关注并能适时加以控制的指标也主要是这三项。
3 IP网网络性能考评
3.1 性能参数的选取
上面罗列的多种NP参数并非都是互联
网运营商必须准确关注的。运营商网络性能参数的选取应考虑几方面的因素:
① 定义网络参数的真正出发点是通过观察和控制指标,满足用户对业务的需求,因此所选参数必须能和用户业务的QoS相联系,反映用户业务的使用效果和感受;
② 所选参数必须能通过一定的技术手段观测和控制,并且不能过于复杂,否则会加大维护工作的难度和工作量;
③ 所选参数应能够从整体上反映网络的实际运行效果,而不是仅反映某个特定阶段或特定网段的性能。
国内的互联网运营商可以从以下三个方面对IP网络的运行状况进行考评:网络的连接性、网络流量特性、网络可用性。
·网络连接性参数
在表述连接性网络性能参数中,非常关键的是时间透明性参数和语意透明性参数。
——时间透明性参数
最为可取的时间参数包括网络时延(单向时延和双向时延)参数和时延抖动参数。
这里的网络时延(区别与业务时延)是指IP包经过特定网段所经历的时长,而由
于互联网业务选路的特性,决定了IP包往返所经过的实际路由往往有所不同,因此双 向网络时延更能够反映交互性较强的业务使用效果,而单向时延对数据传送等单向互联网业务有一定的反映。
时延抖动对于某些特定的业务是比时延参数更为重要的指标,其定义见IPDV。
——语意透明性参数
网络的语意透明性在一定程度上反映了许多业务的可用性,因此考核网络性能一定要选取适当的语意透明性参数。最重要的语意透明性参数应为丢包率。· 网络流量参数
网络流量参数直接与网络建设、扩容、调整相关联,因此也是大多数电信互联网运营商长期用于网络运维的参数。
大多数互联网运营商往往基于其电信网的维护经验来选取参数,而忽略了互联网的特点,没有抓住IP业务的本质特征,造成了建设和维护上的失误。
下面推荐几种可采用的网络流量参数: ——流量流向参数
19
三亿文库3y.uu456.com包含各类专业文献、专业论文、高等教育、文学作品欣赏、行业资料、52IP网性能分析等内容
描述特定链路上峰值/平均业务流量情况,以矩阵形式表示全网的业务流量流向。
——流量特征参数
描述全网/网段/链路上业务流量的特征,可取的参数包括:峰值持续时长、峰值周期、峰平比。
——利用率参数
利用率是最为直接地指导网络扩容的参数,目前国内运营商常用的是平均忙时利用率,而用户则更注重忙时的业务质量。
因此对忙时利用率及其持续时长的监控是分析网络性能的非常关键的手段。
除此之外,可以定义平均利用率、利用率的峰平比等参数,这些参数也是非常有用的网络考核指标。
· 网络可用性参数
IP网络业务可用性用于描述网段段和端到端的IP网络业务。把IP网络业务的全部持续时间分为可用时间和不可用时间。
——IP网络业务可用性功能 IP网络业务可用性功能的基础是IP包丢失率(IPLR)性能的门限值。如果一个端到端IP网络业务的IPLR低于下表中的门限值c1,则该端到端IP网络业务是可用的,否则是不可用的。
门限值c1仅被用来确定何时IP网络的资源不能支持特定的IP包传送业务,不能当作适合各种应用的IPLR性能指标。因此当运营商IP网络支持多种QoS时,适当的方法是用不同的c1值来对应不同的业务。
——IP网络业务可用性参数 IP网络业务可用性参数有两个,一个是IP业务不可用百分数(PIU),另一个是IP业务可用百分数(PIA)。并且:
PIU=100-PIA
-IP业务不可用百分数(PIU) 不能应用IP业务可用性功能的时间间隔占IP业务全部时间间隔的百分数。
20
-IP业务可用百分数(PLA)
能够应用IP业务可用性功能的时间间隔占IP业务全部时间间隔的百分数。 3.2 指标的确定
以上给出的ITU-T对网络性能参数指标,只是针对不同业务和应用提出的参考,而实际在网络上运行的业务多种多样,因此需要考虑的问题也更为复杂。用户考虑更多的是业务的可用性和使用效果,即对QoS更为关注,而网络运营商最关心网络总体运行状况,通过对网络指标的观察和控制,使用户获得更为满意的服务。因此,运营商网络性能指标的确定必须和业务的QoS建立一定程度的映射关系。这种映射关系的确立可通过以下三种方式进行。
· 基于SLA的QoS一些大用户在与IP网络运营商签订服务合同时会明确定义业务等级协议(SLA),对业务的时延、丢包率等特性提出明确的需求,其实质是提出了业务的QoS。对这种具有量化指标的QoS要求,运营商可以对应选取网络性能参数,确定网络的考核指标。
· 基于特定应用的QoS
互联网上的部分特定业务或应用对网络性能有较高的求,虽然用户不会直接定义业务的QoS参量,但如果某些参数降低到一定程度就会影响该业务的开通效果。因此,对应特定的业务,运营商可选取相应的性能参数进行考察,并确定相应的考核指标。
· 传统IP的QoS
目前互联网上大多数业务还是基于Best effort的传统IP业务,对于QoS并没有具体的要求。因此,对这类业务,运营商主要应关注自身网络的整体性能,根据总体需求选取参数,制定考核指标。
实际上,上述各种情况在现有网络上同时存在,因此IP网络运营商在制定网络考核指标时需兼顾各种情况,以满足绝大多数
《邮电规划》2004年第2期 网络技术
网上业务和应用的顺利开通和正常运行。 3.3 指标的测量与分析
除了需求合适的指标外,指标的采集方法、采集制度及分析体系也很重要。· 采集方法
目前IP网络性能参数的测量方式有两种:主动测量和被动测量。
主动方式是插入测试包测试网络。这在一定程度上增加了网络负担,当网络发生拥塞时易加重拥塞,网络流量过低时又易造成数据采集不准确,测试结果往往受测试包长度和类型的影响。故在实际测试时,应慎重选取测试时间和IP包类型、长度,或者考虑多种测试包同时采用。
被动方式采用MIB监测的方式采集性能参数指标,这种方式可得到更为准确有效的测试结果。需要注意的是,采集时应对数据进行分析,建议只统计设备端口的IP数据包,这样采集的数据将更为真实。但对一些跨网业务来说,这种测试往往不能实现。
表5显示了对以上性能参数指标建议采用的测试方法。
按照参数采集手段,参数的收集又可分为手工采集和自动采集。手工采集由网络管理员按照一定的工作流程和命令行收集网络性能的各项参数指标;自动采集则借助于专用工具(测试仪表、嵌入式程序等)对网络参数进行侦测。
· 采集制度
指标采集最好能形成一定的制度,明确测量周期,形成日/周/月/年报制度。并且最好能够定期对每日不同时段的指标进行跟
踪(如以5分钟为周期)。
· 分析体系
运营商需要明确的分析体系,针对不同的关注点,以若干指标的集合分析某种特定的网络特性以及满足特定需求的能力。
科学合理的指标分析体系能够准确地反映网络的实际运行状况,正确指导网络的建设和管理。
另外,指标间统计口径的一致性、采集的同步性也会影响到分析的正确程度。 3.4 网络性能与建设成本
由于国内互联网用户规模非常大,如全都明确QoS指标,运营商就必须为此频繁扩容和调整网络,而另一方面,实际网络的运行效率会非常低,反映在利用率等指标的下降。对于运营商而言,工作量和承受的压力将过大,并且付出的成本代价也非常大。
因此,网络性能的考评和指标的确定应基于满足全网绝大多数用户和绝大多数业务的前提下进行,而不必苛刻地要求所有性能参数都十分理想,并且还应在质量指标和效率指标间寻求一定的平衡。 3.5 网络性能与用户体验
实际上,目前国内商业用户和住宅用户并没有明确的QoS要求。由于网上缺乏真正的宽带应用,大多数用户仅仅要求“感觉上”的高速,即仅对时延敏感,而对丢包率、时延变动等不太关心。
虽然网络的性能指标能够影响用户业务的使用效果,但实际上还是存在一定程度上的不一致性,这就要求网络性能参数指标的选取和观测方法更为贴近实际用户的感受,这一领域的研究还有待进一步加深。
C. 网络性能管理的指标有哪些
1.故障管理:检查、隔离、更改网络上出现的问题,并且修复出现的网络问题; 2.性能管理:收集统计信息,确定各方面性能和日志,在更改和维护系统服务; 3.配置管理:从网络中收集必要的信息、并利用收集到的信息对设备进行相对配置,通过配置,实现对网络设备配置的集中管理; 4.计费管理:计算网络上各种资源的利用情况(如设备器材的成本,网络的利用率),设置算数的度量、确定开销多少、向网络使用用户收费; 5.安全管理:采用多种防护手段降低侵扰和破坏的几率,快速恢复被破坏的数据和网络,快速检测不法入侵与使用,以各种方式降低损失。 故障管理可以通过连通性测试程序(ping)、路由跟踪程序(traceroute)和MIB变量浏览器这些网管工具获取。 性能管理可以通过traceroute,arp,GUI集成监控工具获取。 配置管理可以通过各种操作系统,管理软件中获取。 计费管理可以通过各种计费设置软件,硬件中获取。 安全管理可以通过360安全卫士,NOD32等杀毒防毒软件中获取。 参考资料: http://www.fsstu.com
D. 网络性能管理中性能指标主要有哪些并简述这些性能指标的主要含义
1、可用性。指网络系统、元素或应用时间对用户可利用的时间的百分比。 2、响应时间。指从用户输入请求到系统在终端上返回计算结果的时间间隔。 3、正确性。指网络传输的正确性。 4、吞吐率。是面向效率的指标。 5、利用率。指网络资源利用的百分率。
E. 什么是网络性能管理它有哪些典型功能
网络性能管理是指评价系统资源的运行状况及通信效率等系统性能,包括监视和分析被管网络及其所提供服务的性能机制,性能分析的结果可能会触发某个诊断测试过程或重新配置网络以维持网络的性能。
典型功能:性能监控,由用户定义被管对象及其属性;阀值控制,可对每一个被管对象的每一条属性设置网值;性能分析,对历史数据进行分析、统计和整理;可视化的性能报告,对数据进行扫描和处理,生成性能趋势曲线;实时性能监控,可任意设置数据采集间隔。
(5)网络管理的性能指标有哪些扩展阅读:
网络性能分析
1、表现网元的负荷,如中继链路平均话务量、信令链路平均话务量、忙时VLR用户数、话音拥塞率、信令拥塞率,这类指标超标一般表示系统资源不足,对系统扩容将是最好的解决方案。
2、性能指标,如语音信道掉话率、信令信道掉话率、交换机来话接通率、交换机去话接通率等,这类指标反映了网络某一方面的性能。对性能指标不仅仅是对指标本身的分析同时应包括对构成指标的各个计数器的分析以及对相关计数器的分析。
3、综合指标,如呼叫成功率、长途来话接通率等。这是一些全局的综合指标,它反映了网络的整体运行质量。特别是长途来话接通率,与交换机接通率、语音信道掉话率都有密切的关系。对这类指标分析是根据呼叫流程将综合指标分解为小项,逐项统计分析,确定影响整体指标。
F. 无线局域网的性能指标
全面解析802.11无线技术
作者:中关村在… 文章来源:CNET中国·ZOL 点击数:111 更新时间:2006-10-26 21:16:21
一、1997年版无线网络标准
1997年版IEEE802.11无线网络标准规定了三种物理层介质性能。其中两种物理层介质工作在2400--2483.5 GHz无线射频频段(根据各国当地法规规定),另一种光波段作为其物理层,也就是利用红外线光波传输数据流。而直序列扩频技术(DSSS)则可提供 1Mb/S及2Mb/S工作速率,而跳频扩频(FHSS)技术及红外线技术的无线网络则可提供1Mb/S传输速率(2Mb/S作为可选速率,未作必须要求),受包括这一因素在内的多种因素影响,多数FHSS技术厂家仅能提供1Mb/S的产品,而符合IEEE802.11无线网络标准并使用DSSS直序列扩频技术厂家的产品则全部可以提供2Mb/S的速率,因此DSSS技术在无线网络产品中得到了广泛应用。
1.介质接入控制层功能
无线网络(WLAN)可以无缝连接标准的以太网络。标准的无线网络使用的是(CSMA/CA)介质控制信息而有线网络则使用载体监听访问/冲突检测(CSMA/CA),使用两种不同的方法均是为了避免通信信号冲突。
2.漫游功能
IEEE802.11无线网络标准允许无线网络用户可以在不同的无线网桥网段中使用相同的信道,或在不同的信道之间互相漫游,如Lucent的 WavePOINT II无线网桥每隔100 ms发射一个烽火信号,烽火信号包括同步时钟、网络传输拓扑结构图、传输速度指示及其他参数值,漫游用户利用该烽火信号来衡量网络信道信号质量,如果质量不好,该用户会自动试图连接到其他新的网络接入点。
3.自动速率选择功能
IEEE802.11无线网络标准能使移动用户(Mobile Client)设置在自动速率选择(ARS)模式下,ARS功能会根据信号的质量及与网桥接入点的距离自动为每个传输路径选择最佳的传输速率,该功能还可以根据用户的不同应用环境设置成不同的固定应用速率。
4.电源消耗管理功能
IEEE802.11 还定义了MAC层的信令方式,通过电源管理软件的控制,使得移动用户能具有最长的电池寿命。电源管理会在无数据传输时使网络处于休眠(低电源或断电)状态,这样就可能会丢失数据包。为解决这一问题,IEEE802.11规定了AP接入点应具有缓冲区去储存信息,处于休眠的移动用户会定期醒来恢复该信息。
5.保密功能
仅仅靠普通的直序列扩频编码调制技术不够可靠,如使用无线宽频扫描仪,其信息又容易被窃取。最新的WLAN标准采用了一种加载保密字节的方法,使得无线网络具有同有线以太网相同等级的保密性。此密码编码技术早期应用于美国军方无线电机密通信中,无线网络设备的另一端必须使用同样的密码编码方式才可以互相通信,当无线用户利用AP接入点连入有线网络时还必须通过AP接入点的安全认证。该技术不但可以防止空中窃听,而且也是无线网络认证有效移动用户的一种方法。
二、1999版无线网络标准
该版本于1999年8月颁布。除原IEEE802.11的内容之外,增加了基于SNMP协议的管理信息库(MIB),以取代原OSI协议的管理信息库。另外还增加了高速网络内容:
1.IEEE802.11a
规定的频点为5GHz,用正交频分复用技术(OFDM)来调制数据流。OFDM技术的最大的优势是其无与伦比的多途径回声反射,因此特别适合于室内及移动环境。
2.IEEE802.11b
工作于2.4GHz频点,采用补偿码键控CCK调制技术。当工作站之间的距离过长或干扰过大,信噪比低于某个门限值时,其传输速率可从11Mb/s自动降至5.5Mb/s,或者再降至直序列扩频技术的2Mb/s及1Mb/s速率。
三、无线网络 前途无量
建设符合IEEE802.11标准的无线网络,不仅可以满足目前的需要,而且日后网络还可以平滑升级,可以有效地保护投资。目前IEEE802.11工作小组已成立了新的研究小组,对大信息流量及多工作组同时工作、流量控制及更安全的保密编码、安全认证等技术问题进行研究,随着无线网络成本的不断下调、配套技术的不断完善、覆盖范围的不断增大,无线网络的应用将会成为未来网络的技术主流。
·802.11协议的重要技术指标
由于无线局域网传输介质(微波、红外线)非“有限”的有线,客观上存在一些全新的技术难题,为此IEEE802.11协议规定了一些至关重要的技术机制。
1.CSMA/CA协议
我们知道总线型局域网在MAC层的标准协议是CSMA/CD,即载波侦听多路存取/冲突检测(Carrier Sense Multiple Access with Collision Detection)。但由于无线产品的适配器不易检测信道是否存在冲突,因此802.11全新定义了一种新的协议,即载波侦听多路存取/冲突避免 CSMA/CA(with Collision Avoidance)。一方面,载波侦听--查看介质是否空闲;另一方面,冲突避免--通过随机的时间等待,使信号冲突发生的概率减到最小,当介质被侦听到空闲时,优先发送。不仅如此,为了系统更加稳固,IEEE802.11还提供了带确认帧ACK的CSMA/CA。在一旦遭受其他噪声干扰,或者由于侦听失败时,信号冲突就有可能发生,而这种工作于MAC层的ACK此时能够提供快速的恢复能力。
2.RTS/CTS协议
RTS/CTS协议即请求发送/允许发送协议,相当于一种握手协议,主要用来解决“隐藏终端”问题。“隐藏终端”(Hidden Stations)是指,基站A向基站B发送信息,基站C未侦测到A也向B发送,故A和C同时将信号发送至B,引起信号冲突,最终导致发送至B的信号都丢失了。“隐藏终端”多发生在大型单元中(一般在室外环境),这将带来效率损失,并且需要错误恢复机制。当需要传送大容量文件时,尤其需要杜绝“隐藏终端” 现象的发生。WaveLAN802.11提供了如下解决方案。在参数配置中,若使用RTS/CTS协议,同时设置传送上限字节数--一旦待传送的数据大于此上限值时,即启动RTS/CTS握手协议:首先,A向B发送RTS信号,表明A要向B发送若干数据,B收到RTS后,向所有基站发出CTS信号,表明已准备就绪,A可以发送,其余基站暂时“按兵不动”,然后,A向B发送数据,最后,B接收完数据后,即向所有基站广播ACK确认帧,这样,所有基站又重新可以平等侦听、竞争信道了。
3.信道重整
当传送帧受到严重干扰时,必定要重传。因此若一个信包越大时,所需重传的耗费(时间、控制信号、恢复机制)也就越大;这时,若减小帧尺寸--把大信息包分割为若干小信包,即使重传,也只是重传一个小信包,耗费相对小得多。这样就能大大提高WirelessLAN产品在噪声干扰地区的抗干扰能力。当然,作为一个可选项,用户若在一个“干净”地区,也可以关闭这项功能。
4.多信道漫游
人类是无限追求自由的,随着移动计算设备的日益普及,我们希望出现一种真正无所羁绊的网络接入设备。WaveLAN802.11就是这样的一种设备。传输频带是在接入设备AP(Access Point)上设置的,而基站不须设置固定频带,并且基站具有自动识别功能,基站动态调频到AP设定的频带,这个过程称之为扫描(Scan)。 IEEE802.11定义了两种模式:被动扫描和主动扫描。被动扫描是指,基站侦听AP发出的指示信号,并切换到给定的频带;主动扫描是指,基站提出一个探视请求,接入点AP回送一个包含频带信息的响应,基站就切换到给定的频带。WaveLAN802.11采用的是主动扫描,并且能结合天线接收灵敏度,以信号最佳的信道确定为当前传输信道。这样,当原来位于接入点AP(A)覆盖范围内的基站漫游到接入点AP(B)时,基站能自适应,重新以AP(B)为当前接入点。
5.可靠的安全性能
WaveLAN本身的发射功率很小,小于35mV,而且还被扩展到 22MHz带宽。一方面,平均能量很低(15dBm),另一方面,不存在频率单一的载波,因此很难被扫描跟踪,这也是次项技术一直用于军事上的原因。这些是物理上的安全机制,在软件上,还采用了域名控制、访问权限控制和协议过滤等多重安全机制;并且在有线同等保密(WEP)方面,对于特殊用户,可选以下附件:基于RC4加密(1988RSA运算法则)和密码(40位加密钥匙)。
·802.11协议的重要技术指标
由于无线局域网传输介质(微波、红外线)非“有限”的有线,客观上存在一些全新的技术难题,为此IEEE802.11协议规定了一些至关重要的技术机制。
1.CSMA/CA协议
我们知道总线型局域网在MAC层的标准协议是CSMA/CD,即载波侦听多路存取/冲突检测(Carrier Sense Multiple Access with Collision Detection)。但由于无线产品的适配器不易检测信道是否存在冲突,因此802.11全新定义了一种新的协议,即载波侦听多路存取/冲突避免 CSMA/CA(with Collision Avoidance)。一方面,载波侦听--查看介质是否空闲;另一方面,冲突避免--通过随机的时间等待,使信号冲突发生的概率减到最小,当介质被侦听到空闲时,优先发送。不仅如此,为了系统更加稳固,IEEE802.11还提供了带确认帧ACK的CSMA/CA。在一旦遭受其他噪声干扰,或者由于侦听失败时,信号冲突就有可能发生,而这种工作于MAC层的ACK此时能够提供快速的恢复能力。
2.RTS/CTS协议
RTS/CTS协议即请求发送/允许发送协议,相当于一种握手协议,主要用来解决“隐藏终端”问题。“隐藏终端”(Hidden Stations)是指,基站A向基站B发送信息,基站C未侦测到A也向B发送,故A和C同时将信号发送至B,引起信号冲突,最终导致发送至B的信号都丢失了。“隐藏终端”多发生在大型单元中(一般在室外环境),这将带来效率损失,并且需要错误恢复机制。当需要传送大容量文件时,尤其需要杜绝“隐藏终端” 现象的发生。WaveLAN802.11提供了如下解决方案。在参数配置中,若使用RTS/CTS协议,同时设置传送上限字节数--一旦待传送的数据大于此上限值时,即启动RTS/CTS握手协议:首先,A向B发送RTS信号,表明A要向B发送若干数据,B收到RTS后,向所有基站发出CTS信号,表明已准备就绪,A可以发送,其余基站暂时“按兵不动”,然后,A向B发送数据,最后,B接收完数据后,即向所有基站广播ACK确认帧,这样,所有基站又重新可以平等侦听、竞争信道了。
3.信道重整
当传送帧受到严重干扰时,必定要重传。因此若一个信包越大时,所需重传的耗费(时间、控制信号、恢复机制)也就越大;这时,若减小帧尺寸--把大信息包分割为若干小信包,即使重传,也只是重传一个小信包,耗费相对小得多。这样就能大大提高WirelessLAN产品在噪声干扰地区的抗干扰能力。当然,作为一个可选项,用户若在一个“干净”地区,也可以关闭这项功能。
4.多信道漫游
人类是无限追求自由的,随着移动计算设备的日益普及,我们希望出现一种真正无所羁绊的网络接入设备。WaveLAN802.11就是这样的一种设备。传输频带是在接入设备AP(Access Point)上设置的,而基站不须设置固定频带,并且基站具有自动识别功能,基站动态调频到AP设定的频带,这个过程称之为扫描(Scan)。 IEEE802.11定义了两种模式:被动扫描和主动扫描。被动扫描是指,基站侦听AP发出的指示信号,并切换到给定的频带;主动扫描是指,基站提出一个探视请求,接入点AP回送一个包含频带信息的响应,基站就切换到给定的频带。WaveLAN802.11采用的是主动扫描,并且能结合天线接收灵敏度,以信号最佳的信道确定为当前传输信道。这样,当原来位于接入点AP(A)覆盖范围内的基站漫游到接入点AP(B)时,基站能自适应,重新以AP(B)为当前接入点。
5.可靠的安全性能
WaveLAN本身的发射功率很小,小于35mV,而且还被扩展到 22MHz带宽。一方面,平均能量很低(15dBm),另一方面,不存在频率单一的载波,因此很难被扫描跟踪,这也是次项技术一直用于军事上的原因。这些是物理上的安全机制,在软件上,还采用了域名控制、访问权限控制和协议过滤等多重安全机制;并且在有线同等保密(WEP)方面,对于特殊用户,可选以下附件:基于RC4加密(1988RSA运算法则)和密码(40位加密钥匙)。
新一代Wi-Fi标准
由Airgo、Bermai、Broadcom (博科通讯)、Conexant (科胜讯)、STMicroelectronics (意法半导体)及Texas Instruments (德州仪器)等业界大厂组成的WWiSE联盟日前宣布将把一份完整的共同建议案提交给IEEE 802.11 Task Group N (TGn),其目标是发展新一代Wi-Fi标准,并使它拥有100 Mbps以上的持续数据产出能力,MIMO-OFDM将是这种新技术的基础。IEEE 802.11n将成为无线网络市场上特别重要的标准,因为它会运用和扩大这些功能,使其支持目前正在享受Wi-Fi连接技术优点的众多使用者。
WWiSE代表全球频谱效率,它是提交给Task Group N所有建议案的重要元素,就这方面而言,WWiSE建议案的发展是以全球布署能力和向后兼容于所有其它Wi-Fi标准为主要的宗旨和强制要求,其它考量还包括数据速率必须符合重要区域市场的全球电信法规要求,例如日本。这个建议案还包含由WWiSE厂商提供的免权利金授权选项,主要目标是协助推动 802.11n技术在世界各地的布署应用。
WWiSE建议案是以目前获得全球采用的20 MHz通道格式为基础,世界各地已有超过数千万部Wi-Fi装置正在使用此格式,这种方法不但确保现有Wi-Fi产品获得支持,还可以改善Wi-Fi网络在指定频带内的工作效能。除此之外,联盟厂商也代表了组成Wi-Fi市场的半导体供应和消费领域重要交集,这将在发展厂商和最终产品制造商之间建立起坚强的合作关系。
就技术层面而言,WWiSE建议案标示着802.11实作功能的重大进步,主要特点包括:
•强制使用已经核准、现已存在且全球适用的20MHz Wi-Fi通道宽度,确保它在任何电信法规要求下都能立即使用和布署。
•更强的MIMO-OFDM技术,它是在2×2组态配置和一个20 MHz通道的最低要求下达到135 Mbps最大数据速率、进而降低实作成本的关键。这种技术还能大幅改善简单的天线延伸或信道汇整技术。
•利用4×4 MIMO架构和40 MHz通道宽度(只要主管单位允许)实现的540 Mbps最高数据速率,它能替未来的装置和应用提供持续发展的蓝图。
•强制模式提供与5 GHz和2.4 GHz频带内现有Wi-Fi装置的向后兼容性与互用性,确保已安装的设备仍能获得强大支持。
•先进的FEC编码功能帮助实现最大覆盖率和联机距离,它适用于所有的MIMO组态和通道带宽。
新无线标准802.11n
802.11n来龙去脉
在当今各种无线局域网技术交织的战国时代,WLAN、蓝牙、HomeRF、UWB等竞相绽放,但IEEE802.11系列的WLAN是应用最广泛的。自从1997年IEEE802.11标准实施以来,先后有802.11b、802.11a、802.11g、802.11e、802.11f、 802.11h、802.11i、802.11j等标准制定或者酝酿,但是WLAN依然面对着“四不一没有”的问题,即带宽不足、漫游不方便、网管不强大、系统不安全和没有杀手级的应用等。就像当今VoIP应用中一个全新的领域VoWLAN那样,虽被业内人士看作是WLAN最有希望的杀手级应用,却因为这四个“不”,很难进一步发展。
为了实现高带宽、高质量的WLAN服务,使无线局域网达到以太网的性能水平,802.11n应运而生。
500Mbps的美妙前景
在传输速率方面,802.11n可以将WLAN的传输速率由目前802.11a及802.11g提供的54Mbps提高到108Mbps,甚至高达500Mbps。这得益于将MIMO(多入多出)与OFDM(正交频分复用)技术相结合而应用的MIMO OFDM技术,这个技术不但提高了无线传输质量,也使传输速率得到极大提升。
应用前景:802.11n将使WLAN传输速率达到目前传输速率的10倍,而且可以支持高质量的语音、视频传输,这意味着人们可以在写字楼中用Wi-Fi手机来拨打IP电话和可视电话。
在覆盖范围方面,802.11n采用智能天线技术,通过多组独立天线组成的天线阵列,可以动态调整波束,保证让WLAN用户接收到稳定的信号,并可以减少其它信号的干扰。因此其覆盖范围可以扩大到好几平方公里,使WLAN移动性极大提高。
应用前景:这使得使用笔记本电脑和PDA可以在更大的范围内移动,可以让WLAN信号覆盖到写字楼、酒店和家庭的任何一个角落,让我们真正体验移动办公和移动生活带来的便捷和快乐。
在兼容性方面,802.11n采用了一种软件无线电技术,它是一个完全可编程的硬件平台,使得不同系统的基站和终端都可以通过这一平台的不同软件实现互通和兼容,这使得WLAN的兼容性得到极大改善。这意味着WLAN将不但能实现802.11n向前后兼容,而且可以实现WLAN与无线广域网络的结合,比如3G。
两个阵营在争标准
让人遗憾的是,802.11n现在处于一种“标准滞后、产品早产”的尴尬境地。802.11n标准还没有得到IEEE的正式批准,但采用 MIMO OFDM技术的厂商已经很多,包括Airgo、Bermai、Broadcom以及杰尔系统、Atheros、思科、Intel等等,产品包括无线网卡、无线路由器等,而且已经大量在PC、笔记本电脑中应用。
主导802.11n标准的技术阵营有两个,即WWiSE(World Wide Spectrum Efficiency)联盟和TGn Sync联盟。这两个阵营都希望在下一代无线局域网标准之争中处于优先地位,不过两大阵营的技术构架已经越来越相似,例如都是采用MIMO OFDM技术,而且在8月2日有消息称,他们已经决定不计前嫌,共同向美国电气电子工程师学会(IEEE)递交了802.11n的无线技术版本。
在这激烈的竞争中,我们却看不到中国的身影,让我们不得不感到有些遗憾。这也是我们没有核心技术的后果。标准之争最终还是利益之争,中国企业很难在WLAN核心技术方面取得巨大效益,这是很值得人们深思的。
新无线标准802.11n
802.11n来龙去脉
在当今各种无线局域网技术交织的战国时代,WLAN、蓝牙、HomeRF、UWB等竞相绽放,但IEEE802.11系列的WLAN是应用最广泛的。自从1997年IEEE802.11标准实施以来,先后有802.11b、802.11a、802.11g、802.11e、802.11f、 802.11h、802.11i、802.11j等标准制定或者酝酿,但是WLAN依然面对着“四不一没有”的问题,即带宽不足、漫游不方便、网管不强大、系统不安全和没有杀手级的应用等。就像当今VoIP应用中一个全新的领域VoWLAN那样,虽被业内人士看作是WLAN最有希望的杀手级应用,却因为这四个“不”,很难进一步发展。
为了实现高带宽、高质量的WLAN服务,使无线局域网达到以太网的性能水平,802.11n应运而生。
500Mbps的美妙前景
在传输速率方面,802.11n可以将WLAN的传输速率由目前802.11a及802.11g提供的54Mbps提高到108Mbps,甚至高达500Mbps。这得益于将MIMO(多入多出)与OFDM(正交频分复用)技术相结合而应用的MIMO OFDM技术,这个技术不但提高了无线传输质量,也使传输速率得到极大提升。
应用前景:802.11n将使WLAN传输速率达到目前传输速率的10倍,而且可以支持高质量的语音、视频传输,这意味着人们可以在写字楼中用Wi-Fi手机来拨打IP电话和可视电话。
在覆盖范围方面,802.11n采用智能天线技术,通过多组独立天线组成的天线阵列,可以动态调整波束,保证让WLAN用户接收到稳定的信号,并可以减少其它信号的干扰。因此其覆盖范围可以扩大到好几平方公里,使WLAN移动性极大提高。
应用前景:这使得使用笔记本电脑和PDA可以在更大的范围内移动,可以让WLAN信号覆盖到写字楼、酒店和家庭的任何一个角落,让我们真正体验移动办公和移动生活带来的便捷和快乐。
在兼容性方面,802.11n采用了一种软件无线电技术,它是一个完全可编程的硬件平台,使得不同系统的基站和终端都可以通过这一平台的不同软件实现互通和兼容,这使得WLAN的兼容性得到极大改善。这意味着WLAN将不但能实现802.11n向前后兼容,而且可以实现WLAN与无线广域网络的结合,比如3G。
两个阵营在争标准
让人遗憾的是,802.11n现在处于一种“标准滞后、产品早产”的尴尬境地。802.11n标准还没有得到IEEE的正式批准,但采用 MIMO OFDM技术的厂商已经很多,包括Airgo、Bermai、Broadcom以及杰尔系统、Atheros、思科、Intel等等,产品包括无线网卡、无线路由器等,而且已经大量在PC、笔记本电脑中应用。
主导802.11n标准的技术阵营有两个,即WWiSE(World Wide Spectrum Efficiency)联盟和TGn Sync联盟。这两个阵营都希望在下一代无线局域网标准之争中处于优先地位,不过两大阵营的技术构架已经越来越相似,例如都是采用MIMO OFDM技术,而且在8月2日有消息称,他们已经决定不计前嫌,共同向美国电气电子工程师学会(IEEE)递交了802.11n的无线技术版本。
在这激烈的竞争中,我们却看不到中国的身影,让我们不得不感到有些遗憾。这也是我们没有核心技术的后果。标准之争最终还是利益之争,中国企业很难在WLAN核心技术方面取得巨大效益,这是很值得人们深思的。
更多内容请参考中国无线门户
http://www.anywlan.com
G. 网络管理系统的网络管理系统的性能指标
网络管理系统的性能指标是进行网络设计和功能验收的基础,同时也是针对不同网络管理系统进行比较的标准。
网络管理系统的性能指标一般分为两类:通用指标和专用指标。
通用指标主要是指计算机应用系统的一些通用指标,如可靠性和可维护性等。
专用指标是指与网络管理有关的指标,下面简单加以介绍。
1.网络管理功能的覆盖程度
网络管理功能是一个网络管理系统的基本指标。通常用管理功能的覆盖程度来衡量一个网络系统管理的功能。例如,对网络通信系统的管理,对网络结点设备的管理,对网络运行与维护的管理,对网络安全的管理,等等。
2.网络管理协议的支持程度
网络管理协议是网络管理系统及其相关设备互连的基础。因此,网络管理系统对网络管理协议的支持程度是衡量一个网络管理系统互连能力的一项重要指标。通常,用网络管理系统所支持的网络管理协议的数量来衡量网络管理协议的支持程度。
3.网络管理接口动态定义的程度
网络管理接口是网络管理系统和被管理系统进行交换的参考点,而网络管理系统从被管理系统获得数据的数量和内容是网络管理系统网络管理质量的基础。如果网络管理接El在系统使用后就固定下来,则网络管理系统从被管理系统取得数据的数量和内容就基本上固定了,因而网络管理系统管理质量就基本可以确定。如果网络管理接口在系统使用后,可以在一定程度上和一定范围内进行网络管理接口的重新定义(通常称为网络管理接口动态定义),就可以提高网络管理质量。因此,网络管理接口动态定义的程度可以作为衡量网络管理质量的指标。
4.网络管理的容量
容量是一个系统处理能力的重要指标。网络管理容量是指一个网络管理系统可以管理被管理系统的数量。 被管对象(MO)的可管理性,即MO是否提供管理接口,是否内嵌有代理(AGENT)程序。
H. 网络服务器的参数指标有哪些
性能指标主要是,cpu核数,内存大小,流量带宽大小,存储大小。
另外你也可以用云帮手可以管理这些服务器和资源查看。
I. 网络信息安全的一般性指标是哪些
网络信息安全的基本属性有:完整性、可用性、机密性、可控性、抗抵赖性 。
1,完整性:电子邮件传输过程中保持不被删除、修改、伪造等。
2,可用性:网站服务能够防止拒绝服务攻击。
3,机密性:网络管理账号口令信息泄露将会导致网络设备失控。
4,可控性:管理者可以控制网络用户的行为和网上信息传播。
5,抗抵赖性:通过网络审计,可以记录访问者在网络中的活动。
(9)网络管理的性能指标有哪些扩展阅读:
网络安全的意义:
1,在网络上传输的个人信息(如银行账号和上网登录口令等)不被他人发现,这就是用户对网络上传输的信息具有保密性的要求。
2,在网络上传输的信息没有被他人篡改,这就是用户对网络上传输的信息具有完整性的要求。
3,在网络上发送的信息源是真实的,不是假冒的,这就是用户对通信各方提出的身份认证的要求。