導航:首頁 > 網路連接 > 密碼學在計算機網路的應用

密碼學在計算機網路的應用

發布時間:2022-08-29 00:42:28

密碼學的技術應用

Commitment schemes
Secure multiparty computations
電子投票
認證
數位簽名
Cryptographic engineering
Crypto systems
1. 數位簽章(Digital Signature):
這是以密碼學的方法,根據EDI訊息的內容和發信有該把私鑰,任何人都無法產生該簽名,因此比手寫式的簽名安全許多。收信人則以發信人的公鑰進行數位簽章的驗證。
2. 數位信封(Digital Envelope):
這是以密碼學的方法,用收信人的公鑰對某些機密資料進行加密,收信人收到後再用自己的私鑰解密而讀取機密資料。除了擁有該私鑰的人之外, 任何人即使拿到該加密過的訊息都無法解密,就好像那些資料是用一個牢固的信封裝好,除了收信人之外,沒有人能拆開該信封。
3. 安全回條:
收信人依據訊息內容計算所得到的回覆資料,再以收信人的私鑰進行數位簽章後送回發信人,一方面確保收信人收到的訊息內容正確無誤, 另一方面也使收信人不能否認已經收到原訊息。
4. 安全認證:
每個人在產生自己的公鑰之後,向某一公信的安全認證中心申請注冊,由認證中心負責簽發憑證(Certificate),以保證個人身份與公鑰的對應性與正確性。

❷ 密碼學在計算機網路安全中的作用和地位是什麼

密碼學是實現信息安全的數學理論,屬於最底層的東西。主要研究安全演算法。

❸ 密碼學的應用有哪些

密碼學是研究信息加密、解密和破密的科學,含密碼編碼學和密碼分析學。密碼學是由於保密通信,特別是軍事保密通信的需要而發展進來的新興邊緣學科。如今,除軍政及國家安全機構之外,密碼學的應用已經滲透到各行各業,受到社會各界,特別是商業、金融業及電子工業界的極大關注。在高度發達的信息時代,密碼學專業技術人才將是人類社會運轉必不可少的重要保證。
本學科主要研究方向有:現代密碼的數學理論,流密碼的設計與安全,編碼理論與應用,密碼理論與應用,通信網的安全保密技術,計算機系統安全保密http://ste.xidian.e.cn/graate.htm

❹ 密碼技術在電子商務安全中的應用有哪些

我國信息網路安全研究歷經了通信保密、數據保護兩個階段,正在進入網路信息安全研究階段,現已開發研製出防火牆、安全路由器、安全網關、黑客入侵檢測、系統脆弱性掃描軟體等。但因信息網路安全領域是一個綜合、交叉的學科領域它綜合了利用數學、物理、生化信息技術和計算機技術的諸多學科的長期積累和最新發展成果,提出系統的、完整的和協同的解決信息網路安全的方案,目前應從安全體系結構、安全協議、現代密碼理論、信息分析和監控以及信息安全系統五個方面開展研究,各部分相互協同形成有機整體。

❺ 密碼學有何用途

密碼學是研究編制密碼和破譯密碼的技術科學。研究密碼變化的客觀規律,應用於編制密碼以保守通信秘密的,稱為編碼學;應用於破譯密碼以獲取通信情報的,稱為破譯學,總稱密碼學。

密碼是通信雙方按約定的法則進行信息特殊變換的一種重要保密手段。依照這些法則,變明文為密文,稱為加密變換;變密文為明文,稱為脫密變換。密碼在早期僅對文字或數碼進行加、脫密變換,隨著通信技術的發展,對語音、圖像、數據等都可實施加、脫密變換。

密碼學是在編碼與破譯的斗爭實踐中逐步發展起來的,並隨著先進科學技術的應用,已成為一門綜合性的尖端技術科學。它與語言學、數學、電子學、聲學、資訊理論、計算機科學等有著廣泛而密切的聯系。它的現實研究成果,特別是各國政府現用的密碼編制及破譯手段都具有高度的機密性。

進行明密變換的法則,稱為密碼的體制。指示這種變換的參數,稱為密鑰。它們是密碼編制的重要組成部分。密碼體制的基本類型可以分為四種:錯亂——按照規定的圖形和線路,改變明文字母或數碼等的位置成為密文;代替——用一個或多個代替表將明文字母或數碼等代替為密文;密本——用預先編定的字母或數字密碼組,代替一定的片語單詞等變明文為密文;加亂——用有限元素組成的一串序列作為亂數,按規定的演算法,同明文序列相結合變成密文。以上四種密碼體制,既可單獨使用,也可混合使用 ,以編制出各種復雜度很高的實用密碼。

20世紀70年代以來,一些學者提出了公開密鑰體制,即運用單向函數的數學原理,以實現加、脫密密鑰的分離。加密密鑰是公開的,脫密密鑰是保密的。這種新的密碼體制,引起了密碼學界的廣泛注意和探討。

利用文字和密碼的規律,在一定條件下,採取各種技術手段,通過對截取密文的分析,以求得明文,還原密碼編制,即破譯密碼。破譯不同強度的密碼,對條件的要求也不相同,甚至很不相同。

中國古代秘密通信的手段,已有一些近於密碼的雛形。宋曾公亮、丁度等編撰《武經總要》「字驗」記載,北宋前期,在作戰中曾用一首五言律詩的40個漢字,分別代表40種情況或要求,這種方式已具有了密本體制的特點。

1871年,由上海大北水線電報公司選用6899個漢字,代以四碼數字,成為中國最初的商用明碼本,同時也設計了由明碼本改編為密本及進行加亂的方法。在此基礎上,逐步發展為各種比較復雜的密碼。

在歐洲,公元前405年,斯巴達的將領來山得使用了原始的錯亂密碼;公元前一世紀,古羅馬皇帝凱撒曾使用有序的單表代替密碼;之後逐步發展為密本、多表代替及加亂等各種密碼體制。

二十世紀初,產生了最初的可以實用的機械式和電動式密碼機,同時出現了商業密碼機公司和市場。60年代後,電子密碼機得到較快的發展和廣泛的應用,使密碼的發展進入了一個新的階段。

密碼破譯是隨著密碼的使用而逐步產生和發展的。1412年,波斯人卡勒卡尚迪所編的網路全書中載有破譯簡單代替密碼的方法。到16世紀末期,歐洲一些國家設有專職的破譯人員,以破譯截獲的密信。密碼破譯技術有了相當的發展。1863年普魯士人卡西斯基所著《密碼和破譯技術》,以及1883年法國人克爾克霍夫所著《軍事密碼學》等著作,都對密碼學的理論和方法做過一些論述和探討。1949年美國人香農發表了《秘密體制的通信理論》一文,應用資訊理論的原理分析了密碼學中的一些基本問題。

自19世紀以來,由於電報特別是無線電報的廣泛使用,為密碼通信和第三者的截收都提供了極為有利的條件。通信保密和偵收破譯形成了一條斗爭十分激烈的隱蔽戰線。

1917年,英國破譯了德國外長齊默爾曼的電報,促成了美國對德宣戰。1942年,美國從破譯日本海軍密報中,獲悉日軍對中途島地區的作戰意圖和兵力部署,從而能以劣勢兵力擊破日本海軍的主力,扭轉了太平洋地區的戰局。在保衛英倫三島和其他許多著名的歷史事件中,密碼破譯的成功都起到了極其重要的作用,這些事例也從反面說明了密碼保密的重要地位和意義。

當今世界各主要國家的政府都十分重視密碼工作,有的設立龐大機構,撥出巨額經費,集中數以萬計的專家和科技人員,投入大量高速的電子計算機和其他先進設備進行工作。與此同時,各民間企業和學術界也對密碼日益重視,不少數學家、計算機學家和其他有關學科的專家也投身於密碼學的研究行列,更加速了密碼學的發展。

現在密碼已經成為單獨的學科,從傳統意義上來說,密碼學是研究如何把信息轉換成一種隱蔽的方式並阻止其他人得到它。
密碼學是一門跨學科科目,從很多領域衍生而來:它可以被看做是信息理論,卻使用了大量的數學領域的工具,眾所周知的如數論和有限數學。
原始的信息,也就是需要被密碼保護的信息,被稱為明文。加密是把原始信息轉換成不可讀形式,也就是密碼的過程。解密是加密的逆過程,從加密過的信息中得到原始信息。cipher是加密和解密時使用的演算法。
最早的隱寫術只需紙筆,現在稱為經典密碼學。其兩大類別為置換加密法,將字母的順序重新排列;替換加密法,將一組字母換成其他字母或符號。經典加密法的資訊易受統計的攻破,資料越多,破解就更容易,使用分析頻率就是好辦法。經典密碼學現在仍未消失,經常出現在智力游戲之中。在二十世紀早期,包括轉輪機在內的一些機械設備被發明出來用於加密,其中最著名的是用於第二次世界大戰的密碼機Enigma。這些機器產生的密碼相當大地增加了密碼分析的難度。比如針對Enigma各種各樣的攻擊,在付出了相當大的努力後才得以成功。

❻ 簡述密碼學在實現信息安全目標中所起的作用。

信息安全本身包括的范圍很大,大到國家軍事政治等機密安全,小范圍的當然還包括如防範商業企業機密泄露,防範青少年對不良信息的瀏覽,個人信息的泄露等。網路環境下的信息安全體系是保證信息安全的關鍵,包括計算機安全操作系統、各種安全協議、安全機制(數字簽名,信息認證,數據加密等),直至安全系統,其中任何一個安全漏洞便可以威脅全局安全。信息安全服務至少應該包括支持信息網路安全服務的基本理論,以及基於新一代信息網路體系結構的網路安全服務體系結構。
信息安全是指信息網路的硬體、軟體及其系統中的數據受到保護,不受偶然的或者惡意的原因而遭到破壞、更改、泄露,系統連續可靠正常地運行,信息服務不中斷。

信息安全是一門涉及計算機科學、網路技術、通信技術、密碼技術、信息安全技術、應用數學、數論、資訊理論等多種學科的綜合性學科。

從廣義來說,凡是涉及到網路上信息的保密性、完整性、可用性、真實性和可控性的相關技術和理論都是網路安全的研究領域。

❼ 密碼演算法的密碼學

(1) 發送者和接收者
假設發送者想發送消息給接收者,且想安全地發送信息:她想確信偷聽者不能閱讀發送的消息。
(2) 消息和加密
消息被稱為明文。用某種方法偽裝消息以隱藏它的內容的過程稱為加密,加了密的消息稱為密文,而把密文轉變為明文的過程稱為解密。
明文用M(消息)或P(明文)表示,它可能是比特流(文本文件、點陣圖、數字化的語音流或數字化的視頻圖像)。至於涉及到計算機,P是簡單的二進制數據。明文可被傳送或存儲,無論在哪種情況,M指待加密的消息。
密文用C表示,它也是二進制數據,有時和M一樣大,有時稍大(通過壓縮和加密的結合,C有可能比P小些。然而,單單加密通常達不到這一點)。加密函數E作用於M得到密文C,用數學表示為:
E(M)=C.
相反地,解密函數D作用於C產生M
D(C)=M.
先加密後再解密消息,原始的明文將恢復出來,下面的等式必須成立:
D(E(M))=M
(3) 鑒別、完整性和抗抵賴
除了提供機密性外,密碼學通常有其它的作用:.
(a) 鑒別
消息的接收者應該能夠確認消息的來源;入侵者不可能偽裝成他人。
(b) 完整性檢驗
消息的接收者應該能夠驗證在傳送過程中消息沒有被修改;入侵者不可能用假消息代替合法消息。
(c) 抗抵賴
發送者事後不可能虛假地否認他發送的消息。
(4) 演算法和密鑰
密碼演算法也叫密碼,是用於加密和解密的數學函數。(通常情況下,有兩個相關的函數:一個用作加密,另一個用作解密)
如果演算法的保密性是基於保持演算法的秘密,這種演算法稱為受限制的演算法。受限制的演算法具有歷史意義,但按現在的標准,它們的保密性已遠遠不夠。大的或經常變換的用戶組織不能使用它們,因為每有一個用戶離開這個組織,其它的用戶就必須改換另外不同的演算法。如果有人無意暴露了這個秘密,所有人都必須改變他們的演算法。
但是,受限制的密碼演算法不可能進行質量控制或標准化。每個用戶組織必須有他們自己的唯一演算法。這樣的組織不可能採用流行的硬體或軟體產品。但竊聽者卻可以買到這些流行產品並學習演算法,於是用戶不得不自己編寫演算法並予以實現,如果這個組織中沒有好的密碼學家,那麼他們就無法知道他們是否擁有安全的演算法。
盡管有這些主要缺陷,受限制的演算法對低密級的應用來說還是很流行的,用戶或者沒有認識到或者不在乎他們系統中內在的問題。
現代密碼學用密鑰解決了這個問題,密鑰用K表示。K可以是很多數值里的任意值。密鑰K的可能值的范圍叫做密鑰空間。加密和解密運算都使用這個密鑰(即運算都依賴於密鑰,並用K作為下標表示),這樣,加/解密函數現在變成:
EK(M)=C
DK(C)=M.
這些函數具有下面的特性:
DK(EK(M))=M.
有些演算法使用不同的加密密鑰和解密密鑰,也就是說加密密鑰K1與相應的解密密鑰K2不同,在這種情況下:
EK1(M)=C
DK2(C)=M
DK2 (EK1(M))=M
所有這些演算法的安全性都基於密鑰的安全性;而不是基於演算法的細節的安全性。這就意味著演算法可以公開,也可以被分析,可以大量生產使用演算法的產品,即使偷聽者知道你的演算法也沒有關系;如果他不知道你使用的具體密鑰,他就不可能閱讀你的消息。
密碼系統由演算法、以及所有可能的明文、密文和密鑰組成的。
基於密鑰的演算法通常有兩類:對稱演算法和公開密鑰演算法。下面將分別介紹: 對稱演算法有時又叫傳統密碼演算法,就是加密密鑰能夠從解密密鑰中推算出來,反過來也成立。在大多數對稱演算法中,加/解密密鑰是相同的。這些演算法也叫秘密密鑰演算法或單密鑰演算法,它要求發送者和接收者在安全通信之前,商定一個密鑰。對稱演算法的安全性依賴於密鑰,泄漏密鑰就意味著任何人都能對消息進行加/解密。只要通信需要保密,密鑰就必須保密。
對稱演算法的加密和解密表示為:
EK(M)=C
DK(C)=M
對稱演算法可分為兩類。一次只對明文中的單個比特(有時對位元組)運算的演算法稱為序列演算法或序列密碼。另一類演算法是對明文的一組比特亞行運算,這些比特組稱為分組,相應的演算法稱為分組演算法或分組密碼。現代計算機密碼演算法的典型分組長度為64比特——這個長度大到足以防止分析破譯,但又小到足以方便使用(在計算機出現前,演算法普遍地每次只對明文的一個字元運算,可認為是序列密碼對字元序列的運算)。 公開密鑰演算法(也叫非對稱演算法)是這樣設計的:用作加密的密鑰不同於用作解密的密鑰,而且解密密鑰不能根據加密密鑰計算出來(至少在合理假定的長時間內)。之所以叫做公開密鑰演算法,是因為加密密鑰能夠公開,即陌生者能用加密密鑰加密信息,但只有用相應的解密密鑰才能解密信息。在這些系統中,加密密鑰叫做公開密鑰(簡稱公鑰),解密密鑰叫做私人密鑰(簡稱私鑰)。私人密鑰有時也叫秘密密鑰。為了避免與對稱演算法混淆,此處不用秘密密鑰這個名字。
用公開密鑰K加密表示為
EK(M)=C.
雖然公開密鑰和私人密鑰是不同的,但用相應的私人密鑰解密可表示為:
DK(C)=M
有時消息用私人密鑰加密而用公開密鑰解密,這用於數字簽名(後面將詳細介紹),盡管可能產生混淆,但這些運算可分別表示為:
EK(M)=C
DK(C)=M
當前的公開密碼演算法的速度,比起對稱密碼演算法,要慢的多,這使得公開密碼演算法在大數據量的加密中應用有限。 單向散列函數 H(M) 作用於一個任意長度的消息 M,它返回一個固定長度的散列值 h,其中 h 的長度為 m 。
輸入為任意長度且輸出為固定長度的函數有很多種,但單向散列函數還有使其單向的其它特性:
(1) 給定 M ,很容易計算 h ;
(2) 給定 h ,根據 H(M) = h 計算 M 很難 ;
(3) 給定 M ,要找到另一個消息 M『 並滿足 H(M) = H(M』) 很難。
在許多應用中,僅有單向性是不夠的,還需要稱之為「抗碰撞」的條件:
要找出兩個隨機的消息 M 和 M『,使 H(M) = H(M』) 滿足很難。
由於散列函數的這些特性,由於公開密碼演算法的計算速度往往很慢,所以,在一些密碼協議中,它可以作為一個消息 M 的摘要,代替原始消息 M,讓發送者為 H(M) 簽名而不是對 M 簽名 。
如 SHA 散列演算法用於數字簽名協議 DSA中。 提到數字簽名就離不開公開密碼系統和散列技術。
有幾種公鑰演算法能用作數字簽名。在一些演算法中,例如RSA,公鑰或者私鑰都可用作加密。用你的私鑰加密文件,你就擁有安全的數字簽名。在其它情況下,如DSA,演算法便區分開來了??數字簽名演算法不能用於加密。這種思想首先由Diffie和Hellman提出 。
基本協議是簡單的 :
(1) A 用她的私鑰對文件加密,從而對文件簽名。
(2) A 將簽名的文件傳給B。
(3) B用A的公鑰解密文件,從而驗證簽名。
這個協議中,只需要證明A的公鑰的確是她的。如果B不能完成第(3)步,那麼他知道簽名是無效的。
這個協議也滿足以下特徵:
(1) 簽名是可信的。當B用A的公鑰驗證信息時,他知道是由A簽名的。
(2) 簽名是不可偽造的。只有A知道她的私鑰。
(3) 簽名是不可重用的。簽名是文件的函數,並且不可能轉換成另外的文件。
(4) 被簽名的文件是不可改變的。如果文件有任何改變,文件就不可能用A的公鑰驗證。
(5) 簽名是不可抵賴的。B不用A的幫助就能驗證A的簽名。 加密技術是對信息進行編碼和解碼的技術,編碼是把原來可讀信息(又稱明文)譯成代碼形式(又稱密文),其逆過程就是解碼(解密)。加密技術的要點是加密演算法,加密演算法可以分為對稱加密、不對稱加密和不可逆加密三類演算法。
對稱加密演算法 對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,交易雙方都使用同樣鑰匙,安全性得不到保證。此外,每對用戶每次使用對稱加密演算法時,都需要使用其他人不知道的惟一鑰匙,這會使得發收信雙方所擁有的鑰匙數量成幾何級數增長,密鑰管理成為用戶的負擔。對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有DES和IDEA等。美國國家標准局倡導的AES即將作為新標准取代DES。
不對稱加密演算法 不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加密技術應用非常廣泛。
不可逆加密演算法 的特徵是加密過程中不需要使用密鑰,輸入明文後由系統直接經過加密演算法處理成密文,這種加密後的數據是無法被解密的,只有重新輸入明文,並再次經過同樣不可逆的加密演算法處理,得到相同的加密密文並被系統重新識別後,才能真正解密。顯然,在這類加密過程中,加密是自己,解密還得是自己,而所謂解密,實際上就是重新加一次密,所應用的「密碼」也就是輸入的明文。不可逆加密演算法不存在密鑰保管和分發問題,非常適合在分布式網路系統上使用,但因加密計算復雜,工作量相當繁重,通常只在數據量有限的情形下使用,如廣泛應用在計算機系統中的口令加密,利用的就是不可逆加密演算法。近年來,隨著計算機系統性能的不斷提高,不可逆加密的應用領域正在逐漸增大。在計算機網路中應用較多不可逆加密演算法的有RSA公司發明的MD5演算法和由美國國家標准局建議的不可逆加密標准SHS(Secure Hash Standard:安全雜亂信息標准)等。

❽ 密碼學一般應用在什麼領域有沒有專門的學科

密碼學(在西歐語文中之源於希臘語kryptós,「隱藏的」,和gráphein,「書寫」)是研究如何隱密地傳遞資訊的學門。在現代特別指對資訊以及其傳輸的數學性研究,常被認為是數學和計算機科學的分支,和資訊理論也密切相關。著名的密碼學者Ron Rivest解釋道:「密碼學是關於如何在敵人存在的環境中通訊」,自工程學的角度,這相當於密碼學與純數學的異同。密碼學是資訊安全等相關議題,如認證、存取控制的核心。密碼學的首要目的是隱藏訊息的涵義,並不是隱藏訊息的存在。密碼學也促進了電腦科學,特別是在於電腦與網路安全所使用的技術,如存取控制與資訊的機密性。密碼學已被應用在日常生活:包括自動櫃員機的晶片卡、電腦使用者存取密碼、電子商務等等。

閱讀全文

與密碼學在計算機網路的應用相關的資料

熱點內容
什麼叫網路圖的關鍵節點 瀏覽:914
oppor9s手機網路類型 瀏覽:128
第1場網路大戰一個像素點多少錢 瀏覽:707
網路營銷費用預算表 瀏覽:817
wifi沒問題但電腦沒網路 瀏覽:763
網路電視哪個好用不卡 瀏覽:284
windows查找不到無線網路連接 瀏覽:860
恢復計算機網路的代碼 瀏覽:365
為什麼我的wifi設置沒有網路 瀏覽:147
吃雞為什麼一直讓檢查網路設置 瀏覽:50
手機個人網路在哪裡看 瀏覽:879
網路機頂盒插網線用哪個介面 瀏覽:115
盧卡mini連接網路 瀏覽:475
如何清除網路加速 瀏覽:484
子母路由器需要切換網路嗎求回答 瀏覽:747
鄰居網路信號不強 瀏覽:638
華為m6共享網路 瀏覽:251
網路安全的層次 瀏覽:948
產品網路營銷策略 瀏覽:748
本機數據網路不好怎麼辦 瀏覽:211

友情鏈接